Generalized Incremental Learning under Concept Drift across Evolving Data Streams
- URL: http://arxiv.org/abs/2506.05736v1
- Date: Fri, 06 Jun 2025 04:36:24 GMT
- Title: Generalized Incremental Learning under Concept Drift across Evolving Data Streams
- Authors: En Yu, Jie Lu, Guangquan Zhang,
- Abstract summary: Real-world data streams exhibit inherent non-stationarity characterized by concept drift, posing significant challenges for adaptive learning systems.<n>We formalize Generalized Incremental Learning under Concept Drift (GILCD), characterizing the joint evolution of distributions and label spaces in open-environment streaming contexts.<n>We propose Calibrated Source-Free Adaptation (CSFA), which fuses emerging prototypes with base representations, enabling stable new-class identification.
- Score: 32.62505920071586
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Real-world data streams exhibit inherent non-stationarity characterized by concept drift, posing significant challenges for adaptive learning systems. While existing methods address isolated distribution shifts, they overlook the critical co-evolution of label spaces and distributions under limited supervision and persistent uncertainty. To address this, we formalize Generalized Incremental Learning under Concept Drift (GILCD), characterizing the joint evolution of distributions and label spaces in open-environment streaming contexts, and propose a novel framework called Calibrated Source-Free Adaptation (CSFA). First, CSFA introduces a training-free prototype calibration mechanism that dynamically fuses emerging prototypes with base representations, enabling stable new-class identification without optimization overhead. Second, we design a novel source-free adaptation algorithm, i.e., Reliable Surrogate Gap Sharpness-aware (RSGS) minimization. It integrates sharpness-aware perturbation loss optimization with surrogate gap minimization, while employing entropy-based uncertainty filtering to discard unreliable samples. This mechanism ensures robust distribution alignment and mitigates generalization degradation caused by uncertainties. Therefore, CSFA establishes a unified framework for stable adaptation to evolving semantics and distributions in open-world streaming scenarios. Extensive experiments validate the superior performance and effectiveness of CSFA compared to state-of-the-art approaches.
Related papers
- Taming Domain Shift in Multi-source CT-Scan Classification via Input-Space Standardization [5.501560446935927]
SSFL++ and KDS pipeline perform spatial and temporal standardization to reduce inter-source variance.<n>This study analyzes how this input-space standardization manages the trade-off between local discriminability and cross-source generalization.
arXiv Detail & Related papers (2025-07-26T08:23:43Z) - Advancing Reliable Test-Time Adaptation of Vision-Language Models under Visual Variations [67.35596444651037]
Vision-language models (VLMs) exhibit remarkable zero-shot capabilities but struggle with distribution shifts in downstream tasks when labeled data is unavailable.<n>We propose a Reliable Test-time Adaptation (ReTA) method that enhances reliability from two perspectives.
arXiv Detail & Related papers (2025-07-13T05:37:33Z) - Global Variational Inference Enhanced Robust Domain Adaptation [7.414646586981638]
We propose a framework that learns continuous, class-conditional global priors via variational inference to enable structure-aware cross-domain alignment.<n>GVI-DA minimizes domain gaps through latent feature reconstruction, and mitigates posterior collapse using global codebook learning with randomized sampling.<n>It further improves robustness by discarding low-confidence pseudo-labels and generating reliable target-domain samples.
arXiv Detail & Related papers (2025-07-04T04:43:23Z) - CLUE: Neural Networks Calibration via Learning Uncertainty-Error alignment [7.702016079410588]
We introduce CLUE (Calibration via Learning Uncertainty-Error Alignment), a novel approach that aligns predicted uncertainty with observed error during training.<n>We show that CLUE achieves superior calibration quality and competitive predictive performance with respect to state-of-the-art approaches.
arXiv Detail & Related papers (2025-05-28T19:23:47Z) - Stratify: Rethinking Federated Learning for Non-IID Data through Balanced Sampling [9.774529150331297]
Stratify is a novel FL framework designed to systematically manage class and feature distributions throughout training.<n>Inspired by classical stratified sampling, our approach employs a Stratified Label Schedule (SLS) to ensure balanced exposure across labels.<n>To uphold privacy, we implement a secure client selection protocol leveraging homomorphic encryption.
arXiv Detail & Related papers (2025-04-18T04:44:41Z) - Exploring the Boundary of Diffusion-based Methods for Solving Constrained Optimization [46.75288477458697]
We propose a novel diffusion-based framework for Continuous Constrained Optimization problems called DiOpt.<n>DiOpt operates in two distinct phases: an initial warm-start phase, implemented via supervised learning, followed by a bootstrapping phase.<n>It is designed to iteratively refine solutions, thereby improving the objective function while rigorously satisfying problem constraints.
arXiv Detail & Related papers (2025-02-14T17:43:08Z) - Unified Source-Free Domain Adaptation [44.95240684589647]
In pursuit of transferring a source model to a target domain without access to the source training data, Source-Free Domain Adaptation (SFDA) has been extensively explored.
We propose a novel approach called Latent Causal Factors Discovery (LCFD)
In contrast to previous alternatives that emphasize learning the statistical description of reality, we formulate LCFD from a causality perspective.
arXiv Detail & Related papers (2024-03-12T12:40:08Z) - Enhancing Security in Federated Learning through Adaptive
Consensus-Based Model Update Validation [2.28438857884398]
This paper introduces an advanced approach for fortifying Federated Learning (FL) systems against label-flipping attacks.
We propose a consensus-based verification process integrated with an adaptive thresholding mechanism.
Our results indicate a significant mitigation of label-flipping attacks, bolstering the FL system's resilience.
arXiv Detail & Related papers (2024-03-05T20:54:56Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
We introduce an ensemble Kalman filter (EnKF) into the non-mean-field (NMF) variational inference framework to approximate the posterior distribution of the latent states.
This novel marriage between EnKF and GPSSM not only eliminates the need for extensive parameterization in learning variational distributions, but also enables an interpretable, closed-form approximation of the evidence lower bound (ELBO)
We demonstrate that the resulting EnKF-aided online algorithm embodies a principled objective function by ensuring data-fitting accuracy while incorporating model regularizations to mitigate overfitting.
arXiv Detail & Related papers (2023-12-10T15:22:30Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - Federated Conformal Predictors for Distributed Uncertainty
Quantification [83.50609351513886]
Conformal prediction is emerging as a popular paradigm for providing rigorous uncertainty quantification in machine learning.
In this paper, we extend conformal prediction to the federated learning setting.
We propose a weaker notion of partial exchangeability, better suited to the FL setting, and use it to develop the Federated Conformal Prediction framework.
arXiv Detail & Related papers (2023-05-27T19:57:27Z) - Uncertainty-Aware Source-Free Adaptive Image Super-Resolution with Wavelet Augmentation Transformer [60.31021888394358]
Unsupervised Domain Adaptation (UDA) can effectively address domain gap issues in real-world image Super-Resolution (SR)
We propose a SOurce-free Domain Adaptation framework for image SR (SODA-SR) to address this issue, i.e., adapt a source-trained model to a target domain with only unlabeled target data.
arXiv Detail & Related papers (2023-03-31T03:14:44Z) - Toward Certified Robustness Against Real-World Distribution Shifts [65.66374339500025]
We train a generative model to learn perturbations from data and define specifications with respect to the output of the learned model.
A unique challenge arising from this setting is that existing verifiers cannot tightly approximate sigmoid activations.
We propose a general meta-algorithm for handling sigmoid activations which leverages classical notions of counter-example-guided abstraction refinement.
arXiv Detail & Related papers (2022-06-08T04:09:13Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.