Global Variational Inference Enhanced Robust Domain Adaptation
- URL: http://arxiv.org/abs/2507.03291v1
- Date: Fri, 04 Jul 2025 04:43:23 GMT
- Title: Global Variational Inference Enhanced Robust Domain Adaptation
- Authors: Lingkun Luo, Shiqiang Hu, Liming Chen,
- Abstract summary: We propose a framework that learns continuous, class-conditional global priors via variational inference to enable structure-aware cross-domain alignment.<n>GVI-DA minimizes domain gaps through latent feature reconstruction, and mitigates posterior collapse using global codebook learning with randomized sampling.<n>It further improves robustness by discarding low-confidence pseudo-labels and generating reliable target-domain samples.
- Score: 7.414646586981638
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning-based domain adaptation (DA) methods have shown strong performance by learning transferable representations. However, their reliance on mini-batch training limits global distribution modeling, leading to unstable alignment and suboptimal generalization. We propose Global Variational Inference Enhanced Domain Adaptation (GVI-DA), a framework that learns continuous, class-conditional global priors via variational inference to enable structure-aware cross-domain alignment. GVI-DA minimizes domain gaps through latent feature reconstruction, and mitigates posterior collapse using global codebook learning with randomized sampling. It further improves robustness by discarding low-confidence pseudo-labels and generating reliable target-domain samples. Extensive experiments on four benchmarks and thirty-eight DA tasks demonstrate consistent state-of-the-art performance. We also derive the model's evidence lower bound (ELBO) and analyze the effects of prior continuity, codebook size, and pseudo-label noise tolerance. In addition, we compare GVI-DA with diffusion-based generative frameworks in terms of optimization principles and efficiency, highlighting both its theoretical soundness and practical advantages.
Related papers
- Boosting Domain Generalized and Adaptive Detection with Diffusion Models: Fitness, Generalization, and Transferability [0.0]
Detectors often suffer from performance drop due to domain gap between training and testing data.<n>Recent methods explore diffusion models applied to domain generalization (DG) and adaptation (DA) tasks.<n>We propose to tackle these problems by extracting intermediate features from a single-step diffusion process.
arXiv Detail & Related papers (2025-06-26T06:42:23Z) - Partial Transportability for Domain Generalization [56.37032680901525]
Building on the theory of partial identification and transportability, this paper introduces new results for bounding the value of a functional of the target distribution.<n>Our contribution is to provide the first general estimation technique for transportability problems.<n>We propose a gradient-based optimization scheme for making scalable inferences in practice.
arXiv Detail & Related papers (2025-03-30T22:06:37Z) - Gradient-Guided Annealing for Domain Generalization [5.124256074746721]
Gradient-Guided Annealing (GGA) algorithm is proposed to improve domain generalization effectiveness.<n>The efficacy of GGA is evaluated on five widely accepted and challenging image classification domain generalization benchmarks.
arXiv Detail & Related papers (2025-02-27T15:01:55Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - CAusal and collaborative proxy-tasKs lEarning for Semi-Supervised Domain
Adaptation [20.589323508870592]
Semi-supervised domain adaptation (SSDA) adapts a learner to a new domain by effectively utilizing source domain data and a few labeled target samples.
We show that the proposed model significantly outperforms SOTA methods in terms of effectiveness and generalisability on SSDA datasets.
arXiv Detail & Related papers (2023-03-30T16:48:28Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) aims to connect the good ends of both worlds while bypassing their limitations.
DaC divides the target data into source-like and target-specific samples, where either group of samples is treated with tailored goals.
We further align the source-like domain with the target-specific samples using a memory bank-based Maximum Mean Discrepancy (MMD) loss to reduce the distribution mismatch.
arXiv Detail & Related papers (2022-11-12T09:21:49Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
Variational Autoencoder (VAE) approximates the posterior of latent variables based on amortized variational inference.
We propose an alternative model, DU-VAE, for learning a more Diverse and less Uncertain latent space.
arXiv Detail & Related papers (2021-10-24T07:58:13Z) - Posterior Differential Regularization with f-divergence for Improving
Model Robustness [95.05725916287376]
We focus on methods that regularize the model posterior difference between clean and noisy inputs.
We generalize the posterior differential regularization to the family of $f$-divergences.
Our experiments show that regularizing the posterior differential with $f$-divergence can result in well-improved model robustness.
arXiv Detail & Related papers (2020-10-23T19:58:01Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.