Taming Domain Shift in Multi-source CT-Scan Classification via Input-Space Standardization
- URL: http://arxiv.org/abs/2507.19858v1
- Date: Sat, 26 Jul 2025 08:23:43 GMT
- Title: Taming Domain Shift in Multi-source CT-Scan Classification via Input-Space Standardization
- Authors: Chia-Ming Lee, Bo-Cheng Qiu, Ting-Yao Chen, Ming-Han Sun, Fang-Ying Lin, Jung-Tse Tsai, I-An Tsai, Yu-Fan Lin, Chih-Chung Hsu,
- Abstract summary: SSFL++ and KDS pipeline perform spatial and temporal standardization to reduce inter-source variance.<n>This study analyzes how this input-space standardization manages the trade-off between local discriminability and cross-source generalization.
- Score: 5.501560446935927
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-source CT-scan classification suffers from domain shifts that impair cross-source generalization. While preprocessing pipelines combining Spatial-Slice Feature Learning (SSFL++) and Kernel-Density-based Slice Sampling (KDS) have shown empirical success, the mechanisms underlying their domain robustness remain underexplored. This study analyzes how this input-space standardization manages the trade-off between local discriminability and cross-source generalization. The SSFL++ and KDS pipeline performs spatial and temporal standardization to reduce inter-source variance, effectively mapping disparate inputs into a consistent target space. This preemptive alignment mitigates domain shift and simplifies the learning task for network optimization. Experimental validation demonstrates consistent improvements across architectures, proving the benefits stem from the preprocessing itself. The approach's effectiveness was validated by securing first place in a competitive challenge, supporting input-space standardization as a robust and practical solution for multi-institutional medical imaging.
Related papers
- Generalized Incremental Learning under Concept Drift across Evolving Data Streams [32.62505920071586]
Real-world data streams exhibit inherent non-stationarity characterized by concept drift, posing significant challenges for adaptive learning systems.<n>We formalize Generalized Incremental Learning under Concept Drift (GILCD), characterizing the joint evolution of distributions and label spaces in open-environment streaming contexts.<n>We propose Calibrated Source-Free Adaptation (CSFA), which fuses emerging prototypes with base representations, enabling stable new-class identification.
arXiv Detail & Related papers (2025-06-06T04:36:24Z) - Cross-Domain Continual Learning via CLAMP [10.553456651003055]
CLAMP significantly outperforms established baseline algorithms across all experiments by at least $10%$ margin.
An assessor-guided learning process is put forward to navigate the learning process of a base model.
arXiv Detail & Related papers (2024-05-12T02:41:31Z) - Test-Time Domain Generalization for Face Anti-Spoofing [60.94384914275116]
Face Anti-Spoofing (FAS) is pivotal in safeguarding facial recognition systems against presentation attacks.
We introduce a novel Test-Time Domain Generalization framework for FAS, which leverages the testing data to boost the model's generalizability.
Our method, consisting of Test-Time Style Projection (TTSP) and Diverse Style Shifts Simulation (DSSS), effectively projects the unseen data to the seen domain space.
arXiv Detail & Related papers (2024-03-28T11:50:23Z) - Unified Domain Adaptive Semantic Segmentation [96.74199626935294]
Unsupervised Adaptive Domain Semantic (UDA-SS) aims to transfer the supervision from a labeled source domain to an unlabeled target domain.<n>We propose a Quad-directional Mixup (QuadMix) method, characterized by tackling distinct point attributes and feature inconsistencies.<n>Our method outperforms the state-of-the-art works by large margins on four challenging UDA-SS benchmarks.
arXiv Detail & Related papers (2023-11-22T09:18:49Z) - Fourier Test-time Adaptation with Multi-level Consistency for Robust
Classification [10.291631977766672]
We propose a novel approach called Fourier Test-time Adaptation (FTTA) to integrate input and model tuning.
FTTA builds a reliable multi-level consistency measurement of paired inputs for achieving self-supervised of prediction.
It was extensively validated on three large classification datasets with different modalities and organs.
arXiv Detail & Related papers (2023-06-05T02:29:38Z) - Balancing Discriminability and Transferability for Source-Free Domain
Adaptation [55.143687986324935]
Conventional domain adaptation (DA) techniques aim to improve domain transferability by learning domain-invariant representations.
The requirement of simultaneous access to labeled source and unlabeled target renders them unsuitable for the challenging source-free DA setting.
We derive novel insights to show that a mixup between original and corresponding translated generic samples enhances the discriminability-transferability trade-off.
arXiv Detail & Related papers (2022-06-16T09:06:22Z) - Amplitude Spectrum Transformation for Open Compound Domain Adaptive
Semantic Segmentation [62.68759523116924]
Open compound domain adaptation (OCDA) has emerged as a practical adaptation setting.
We propose a novel feature space Amplitude Spectrum Transformation (AST)
arXiv Detail & Related papers (2022-02-09T05:40:34Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Margin Preserving Self-paced Contrastive Learning Towards Domain
Adaptation for Medical Image Segmentation [51.93711960601973]
We propose a novel margin preserving self-paced contrastive Learning model for cross-modal medical image segmentation.
With the guidance of progressively refined semantic prototypes, a novel margin preserving contrastive loss is proposed to boost the discriminability of embedded representation space.
Experiments on cross-modal cardiac segmentation tasks demonstrate that MPSCL significantly improves semantic segmentation performance.
arXiv Detail & Related papers (2021-03-15T15:23:10Z) - Physically-Constrained Transfer Learning through Shared Abundance Space
for Hyperspectral Image Classification [14.840925517957258]
We propose a new transfer learning scheme to bridge the gap between the source and target domains.
The proposed method is referred to as physically-constrained transfer learning through shared abundance space.
arXiv Detail & Related papers (2020-08-19T17:41:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.