Exploring Microstructural Dynamics in Cryptocurrency Limit Order Books: Better Inputs Matter More Than Stacking Another Hidden Layer
- URL: http://arxiv.org/abs/2506.05764v2
- Date: Mon, 09 Jun 2025 22:37:07 GMT
- Title: Exploring Microstructural Dynamics in Cryptocurrency Limit Order Books: Better Inputs Matter More Than Stacking Another Hidden Layer
- Authors: Haochuan Wang,
- Abstract summary: We aim to examine whether adding extra hidden layers or parameters to "blackbox ish" neural networks genuinely enhances short term price forecasting.<n>We benchmark a spectrum of models from interpretable baselines, logistic regression, XGBoost to deep architectures (DeepLOB, Conv1D+LSTM) on BTC/USDT LOB snapshots sampled at 100 ms to multi second intervals using publicly available Bybit data.
- Score: 9.2463347238923
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Cryptocurrency price dynamics are driven largely by microstructural supply demand imbalances in the limit order book (LOB), yet the highly noisy nature of LOB data complicates the signal extraction process. Prior research has demonstrated that deep-learning architectures can yield promising predictive performance on pre-processed equity and futures LOB data, but they often treat model complexity as an unqualified virtue. In this paper, we aim to examine whether adding extra hidden layers or parameters to "blackbox ish" neural networks genuinely enhances short term price forecasting, or if gains are primarily attributable to data preprocessing and feature engineering. We benchmark a spectrum of models from interpretable baselines, logistic regression, XGBoost to deep architectures (DeepLOB, Conv1D+LSTM) on BTC/USDT LOB snapshots sampled at 100 ms to multi second intervals using publicly available Bybit data. We introduce two data filtering pipelines (Kalman, Savitzky Golay) and evaluate both binary (up/down) and ternary (up/flat/down) labeling schemes. Our analysis compares models on out of sample accuracy, latency, and robustness to noise. Results reveal that, with data preprocessing and hyperparameter tuning, simpler models can match and even exceed the performance of more complex networks, offering faster inference and greater interpretability.
Related papers
- QuantVSR: Low-Bit Post-Training Quantization for Real-World Video Super-Resolution [53.13952833016505]
We propose a low-bit quantization model for real-world video super-resolution (VSR)<n>We use a calibration dataset to measure both spatial and temporal complexity for each layer.<n>We refine the FP and low-bit branches to achieve simultaneous optimization.
arXiv Detail & Related papers (2025-08-06T14:35:59Z) - Predictive Performance of Deep Quantum Data Re-uploading Models [4.852613028421959]
This study reveals a fundamental limitation in predictive performance when deep encoding layers are employed within the data re-uploading model.<n>We theoretically demonstrate that when processing high-dimensional data with limited-qubit data re-uploading models, their predictive performance progressively degenerates to near random-guessing levels.
arXiv Detail & Related papers (2025-05-24T13:11:31Z) - Brain-on-Switch: Towards Advanced Intelligent Network Data Plane via NN-Driven Traffic Analysis at Line-Speed [33.455302442142994]
programmable networks sparked significant research on Intelligent Network Data Plane (INDP), which achieves learning-based traffic analysis at line-speed.
Prior art in INDP focus on deploying tree/forest models on the data plane.
We present BoS to push the boundaries of INDP by enabling Neural Network (NN) driven traffic analysis at line-speed.
arXiv Detail & Related papers (2024-03-17T04:59:30Z) - Combating Bilateral Edge Noise for Robust Link Prediction [56.43882298843564]
We propose an information-theory-guided principle, Robust Graph Information Bottleneck (RGIB), to extract reliable supervision signals and avoid representation collapse.
Two instantiations, RGIB-SSL and RGIB-REP, are explored to leverage the merits of different methodologies.
Experiments on six datasets and three GNNs with diverse noisy scenarios verify the effectiveness of our RGIB instantiations.
arXiv Detail & Related papers (2023-11-02T12:47:49Z) - Decoder Tuning: Efficient Language Understanding as Decoding [84.68266271483022]
We present Decoder Tuning (DecT), which in contrast optimize task-specific decoder networks on the output side.
By gradient-based optimization, DecT can be trained within several seconds and requires only one P query per sample.
We conduct extensive natural language understanding experiments and show that DecT significantly outperforms state-of-the-art algorithms with a $200times$ speed-up.
arXiv Detail & Related papers (2022-12-16T11:15:39Z) - DSLOB: A Synthetic Limit Order Book Dataset for Benchmarking Forecasting
Algorithms under Distributional Shift [16.326002979578686]
In electronic trading markets, limit order books (LOBs) provide information about pending buy/sell orders at various price levels for a given security.
Recently, there has been a growing interest in using LOB data for resolving downstream machine learning tasks.
arXiv Detail & Related papers (2022-11-17T06:33:27Z) - The Limit Order Book Recreation Model (LOBRM): An Extended Analysis [2.0305676256390934]
The microstructure order book (LOB) depicts the fine-ahead-ahead demand and supply relationship for financial assets.
LOBRM was recently proposed to bridge this gap by synthesizing the LOB from trades and quotes (TAQ) data.
We extend the research on LOBRM and further validate its use in real-world application scenarios.
arXiv Detail & Related papers (2021-07-01T15:25:21Z) - Towards an Understanding of Benign Overfitting in Neural Networks [104.2956323934544]
Modern machine learning models often employ a huge number of parameters and are typically optimized to have zero training loss.
We examine how these benign overfitting phenomena occur in a two-layer neural network setting.
We show that it is possible for the two-layer ReLU network interpolator to achieve a near minimax-optimal learning rate.
arXiv Detail & Related papers (2021-06-06T19:08:53Z) - JUMBO: Scalable Multi-task Bayesian Optimization using Offline Data [86.8949732640035]
We propose JUMBO, an MBO algorithm that sidesteps limitations by querying additional data.
We show that it achieves no-regret under conditions analogous to GP-UCB.
Empirically, we demonstrate significant performance improvements over existing approaches on two real-world optimization problems.
arXiv Detail & Related papers (2021-06-02T05:03:38Z) - Understanding Self-supervised Learning with Dual Deep Networks [74.92916579635336]
We propose a novel framework to understand contrastive self-supervised learning (SSL) methods that employ dual pairs of deep ReLU networks.
We prove that in each SGD update of SimCLR with various loss functions, the weights at each layer are updated by a emphcovariance operator.
To further study what role the covariance operator plays and which features are learned in such a process, we model data generation and augmentation processes through a emphhierarchical latent tree model (HLTM)
arXiv Detail & Related papers (2020-10-01T17:51:49Z) - A Survey on Impact of Transient Faults on BNN Inference Accelerators [0.9667631210393929]
Big data booming enables us to easily access and analyze the highly large data sets.
Deep learning models require significant computation power and extremely high memory accesses.
In this study, we demonstrate that the impact of soft errors on a customized deep learning algorithm might cause drastic image misclassification.
arXiv Detail & Related papers (2020-04-10T16:15:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.