A Survey on Impact of Transient Faults on BNN Inference Accelerators
- URL: http://arxiv.org/abs/2004.05915v1
- Date: Fri, 10 Apr 2020 16:15:55 GMT
- Title: A Survey on Impact of Transient Faults on BNN Inference Accelerators
- Authors: Navid Khoshavi, Connor Broyles, and Yu Bi
- Abstract summary: Big data booming enables us to easily access and analyze the highly large data sets.
Deep learning models require significant computation power and extremely high memory accesses.
In this study, we demonstrate that the impact of soft errors on a customized deep learning algorithm might cause drastic image misclassification.
- Score: 0.9667631210393929
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Over past years, the philosophy for designing the artificial intelligence
algorithms has significantly shifted towards automatically extracting the
composable systems from massive data volumes. This paradigm shift has been
expedited by the big data booming which enables us to easily access and analyze
the highly large data sets. The most well-known class of big data analysis
techniques is called deep learning. These models require significant
computation power and extremely high memory accesses which necessitate the
design of novel approaches to reduce the memory access and improve power
efficiency while taking into account the development of domain-specific
hardware accelerators to support the current and future data sizes and model
structures.The current trends for designing application-specific integrated
circuits barely consider the essential requirement for maintaining the complex
neural network computation to be resilient in the presence of soft errors. The
soft errors might strike either memory storage or combinational logic in the
hardware accelerator that can affect the architectural behavior such that the
precision of the results fall behind the minimum allowable correctness. In this
study, we demonstrate that the impact of soft errors on a customized deep
learning algorithm called Binarized Neural Network might cause drastic image
misclassification. Our experimental results show that the accuracy of image
classifier can drastically drop by 76.70% and 19.25% in lfcW1A1 and cnvW1A1
networks,respectively across CIFAR-10 and MNIST datasets during the fault
injection for the worst-case scenarios
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Reducing Data Bottlenecks in Distributed, Heterogeneous Neural Networks [5.32129361961937]
This paper investigates the impact of bottleneck size on the performance of deep learning models in embedded multicore and many-core systems.
We apply a hardware-software co-design methodology where data bottlenecks are replaced with extremely narrow layers to reduce the amount of data traffic.
Hardware-side evaluation reveals that higher bottleneck ratios lead to substantial reductions in data transfer volume across the layers of the neural network.
arXiv Detail & Related papers (2024-10-12T21:07:55Z) - Dynamic Early Exiting Predictive Coding Neural Networks [3.542013483233133]
With the urge for smaller and more accurate devices, Deep Learning models became too heavy to deploy.
We propose a shallow bidirectional network based on predictive coding theory and dynamic early exiting for halting further computations.
We achieve comparable accuracy to VGG-16 in image classification on CIFAR-10 with fewer parameters and less computational complexity.
arXiv Detail & Related papers (2023-09-05T08:00:01Z) - Solving Large-scale Spatial Problems with Convolutional Neural Networks [88.31876586547848]
We employ transfer learning to improve training efficiency for large-scale spatial problems.
We propose that a convolutional neural network (CNN) can be trained on small windows of signals, but evaluated on arbitrarily large signals with little to no performance degradation.
arXiv Detail & Related papers (2023-06-14T01:24:42Z) - Systematic Evaluation of Deep Learning Models for Log-based Failure Prediction [3.3810628880631226]
This paper systematically investigates the combination of log data embedding strategies and Deep Learning (DL) types for failure prediction.
To that end, we propose a modular architecture to accommodate various configurations of embedding strategies and DL-based encoders.
Using the F1 score metric, our results show that the best overall performing configuration is a CNN-based encoder with Logkey2vec.
arXiv Detail & Related papers (2023-03-13T16:04:14Z) - Biologically Plausible Learning on Neuromorphic Hardware Architectures [27.138481022472]
Neuromorphic computing is an emerging paradigm that confronts this imbalance by computations directly in analog memories.
This work is the first to compare the impact of different learning algorithms on Compute-In-Memory-based hardware and vice versa.
arXiv Detail & Related papers (2022-12-29T15:10:59Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - From DNNs to GANs: Review of efficient hardware architectures for deep
learning [0.0]
Neural network and deep learning has been started to impact the present research paradigm.
DSP processors are incapable of performing neural network, activation function, convolutional neural network and generative adversarial network operations.
Different algorithms have been adapted to design a DSP processor compatible for fast performance in neural network, activation function, convolutional neural network and generative adversarial network.
arXiv Detail & Related papers (2021-06-06T13:23:06Z) - One-step regression and classification with crosspoint resistive memory
arrays [62.997667081978825]
High speed, low energy computing machines are in demand to enable real-time artificial intelligence at the edge.
One-step learning is supported by simulations of the prediction of the cost of a house in Boston and the training of a 2-layer neural network for MNIST digit recognition.
Results are all obtained in one computational step, thanks to the physical, parallel, and analog computing within the crosspoint array.
arXiv Detail & Related papers (2020-05-05T08:00:07Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
Training deep neural networks on large-scale datasets requires significant hardware resources.
Backpropagation, the workhorse for training these networks, is an inherently sequential process that is difficult to parallelize.
We propose a neuro-biologically-plausible alternative to backprop that can be used to train deep networks.
arXiv Detail & Related papers (2020-02-10T16:20:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.