Brain-on-Switch: Towards Advanced Intelligent Network Data Plane via NN-Driven Traffic Analysis at Line-Speed
- URL: http://arxiv.org/abs/2403.11090v1
- Date: Sun, 17 Mar 2024 04:59:30 GMT
- Title: Brain-on-Switch: Towards Advanced Intelligent Network Data Plane via NN-Driven Traffic Analysis at Line-Speed
- Authors: Jinzhu Yan, Haotian Xu, Zhuotao Liu, Qi Li, Ke Xu, Mingwei Xu, Jianping Wu,
- Abstract summary: programmable networks sparked significant research on Intelligent Network Data Plane (INDP), which achieves learning-based traffic analysis at line-speed.
Prior art in INDP focus on deploying tree/forest models on the data plane.
We present BoS to push the boundaries of INDP by enabling Neural Network (NN) driven traffic analysis at line-speed.
- Score: 33.455302442142994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emerging programmable networks sparked significant research on Intelligent Network Data Plane (INDP), which achieves learning-based traffic analysis at line-speed. Prior art in INDP focus on deploying tree/forest models on the data plane. We observe a fundamental limitation in tree-based INDP approaches: although it is possible to represent even larger tree/forest tables on the data plane, the flow features that are computable on the data plane are fundamentally limited by hardware constraints. In this paper, we present BoS to push the boundaries of INDP by enabling Neural Network (NN) driven traffic analysis at line-speed. Many types of NNs (such as Recurrent Neural Network (RNN), and transformers) that are designed to work with sequential data have advantages over tree-based models, because they can take raw network data as input without complex feature computations on the fly. However, the challenge is significant: the recurrent computation scheme used in RNN inference is fundamentally different from the match-action paradigm used on the network data plane. BoS addresses this challenge by (i) designing a novel data plane friendly RNN architecture that can execute unlimited RNN time steps with limited data plane stages, effectively achieving line-speed RNN inference; and (ii) complementing the on-switch RNN model with an off-switch transformer-based traffic analysis module to further boost the overall performance. We implement a prototype of BoS using a P4 programmable switch as our data plane, and extensively evaluate it over multiple traffic analysis tasks. The results show that BoS outperforms state-of-the-art in both analysis accuracy and scalability.
Related papers
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
In neuromorphic computing, spiking neural networks (SNNs) perform inference tasks, offering significant efficiency gains for workloads involving sequential data.
Recent advances in hardware and software have demonstrated that embedding a few bits of payload in each spike exchanged between the spiking neurons can further enhance inference accuracy.
This paper investigates a wireless neuromorphic split computing architecture employing multi-level SNNs.
arXiv Detail & Related papers (2024-11-07T14:08:35Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
We present a novel two-stream feature fusion "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) architecture.
To better learn the meaningful patterns in the temporal-spatial domain, we design a "CT" stream that integrates a hybrid convolutional-transformer.
In parallel, to efficiently extract rich patterns from the temporal-frequency domain, we introduce a "TC" stream that uses Continuous Wavelet Transform (CWT) to represent information in a 2D tensor form.
arXiv Detail & Related papers (2024-04-15T06:01:48Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Simpler is better: Multilevel Abstraction with Graph Convolutional
Recurrent Neural Network Cells for Traffic Prediction [6.968068088508505]
We present a new sequence-to-sequence architecture for graph neural networks (GNNs)
We also present a new benchmark benchmark dataset of street-level segment data in Montreal, Canada.
Our model improves performance by more than 7% for one-hour prediction compared to the baseline methods.
arXiv Detail & Related papers (2022-09-08T14:56:29Z) - Object Detection with Spiking Neural Networks on Automotive Event Data [0.0]
We propose to train spiking neural networks (SNNs) directly on data coming from event cameras to design fast and efficient automotive embedded applications.
In this paper, we conducted experiments on two automotive event datasets, establishing new state-of-the-art classification results for spiking neural networks.
arXiv Detail & Related papers (2022-05-09T14:39:47Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - FENXI: Deep-learning Traffic Analytics at the Edge [69.34903175081284]
We present FENXI, a system to run complex analytics by leveraging TPU.
FENXI decouples operations and traffic analytics which operates at different granularities.
Our analysis shows that FENXI can sustain forwarding line rate traffic processing requiring only limited resources.
arXiv Detail & Related papers (2021-05-25T08:02:44Z) - Scalable Learning With a Structural Recurrent Neural Network for
Short-Term Traffic Prediction [12.550067622364162]
This paper presents a scalable deep learning approach for short-term traffic prediction based on historical traffic data in a road network.
The SRNN model trained with data of a road network is able to predict traffic speed of different road networks, with the fixed number of parameters to train.
arXiv Detail & Related papers (2021-03-03T18:21:49Z) - Graph Neural Networks for Leveraging Industrial Equipment Structure: An
application to Remaining Useful Life Estimation [21.297461316329453]
We propose to capture the structure of a complex equipment in the form of a graph, and use graph neural networks (GNNs) to model multi-sensor time-series data.
We observe that the proposed GNN-based RUL estimation model compares favorably to several strong baselines from literature such as those based on RNNs and CNNs.
arXiv Detail & Related papers (2020-06-30T06:38:08Z) - Stacked Bidirectional and Unidirectional LSTM Recurrent Neural Network
for Forecasting Network-wide Traffic State with Missing Values [23.504633202965376]
We focus on RNN-based models and attempt to reformulate the way to incorporate RNN and its variants into traffic prediction models.
A stacked bidirectional and unidirectional LSTM network architecture (SBU-LSTM) is proposed to assist the design of neural network structures for traffic state forecasting.
We also propose a data imputation mechanism in the LSTM structure (LSTM-I) by designing an imputation unit to infer missing values and assist traffic prediction.
arXiv Detail & Related papers (2020-05-24T00:17:15Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.