論文の概要: DeformCL: Learning Deformable Centerline Representation for Vessel Extraction in 3D Medical Image
- arxiv url: http://arxiv.org/abs/2506.05820v1
- Date: Fri, 06 Jun 2025 07:33:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-09 17:28:43.361776
- Title: DeformCL: Learning Deformable Centerline Representation for Vessel Extraction in 3D Medical Image
- Title(参考訳): DeformCL:3次元医用画像における血管抽出のための変形可能な中心表現の学習
- Authors: Ziwei Zhao, Zhixing Zhang, Yuhang Liu, Zhao Zhang, Haojun Yu, Dong Wang, Liwei Wang,
- Abstract要約: Deformable Centerlinesに基づいた新しい連続表現であるDeformCLを紹介する。
以前の表現と比較すると、DeformCLには3つの大きな利点がある。
本稿では,DeformCLのこれらの特性を完全に活用するために,包括的学習パイプラインをケースド方式で構築する。
- 参考スコア(独自算出の注目度): 20.827239262988186
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of 3D medical imaging, accurately extracting and representing the blood vessels with curvilinear structures holds paramount importance for clinical diagnosis. Previous methods have commonly relied on discrete representation like mask, often resulting in local fractures or scattered fragments due to the inherent limitations of the per-pixel classification paradigm. In this work, we introduce DeformCL, a new continuous representation based on Deformable Centerlines, where centerline points act as nodes connected by edges that capture spatial relationships. Compared with previous representations, DeformCL offers three key advantages: natural connectivity, noise robustness, and interaction facility. We present a comprehensive training pipeline structured in a cascaded manner to fully exploit these favorable properties of DeformCL. Extensive experiments on four 3D vessel segmentation datasets demonstrate the effectiveness and superiority of our method. Furthermore, the visualization of curved planar reformation images validates the clinical significance of the proposed framework. We release the code in https://github.com/barry664/DeformCL
- Abstract(参考訳): 3次元医用画像の分野では、臨床診断において、血管を正確に抽出し、カービリナー構造で表現することが最重要となる。
従来はマスクのような離散的な表現に頼っていたが、多くの場合、ピクセル単位の分類パラダイムに固有の制限があるため、局所的な骨折やばらばらな断片が生じる。
本稿では,Deformable Centerlinesに基づく新しい連続表現であるDeformCLを紹介する。
以前の表現と比較すると、DeformCLには3つの大きな利点がある。
本稿では,DeformCLのこれらの特性を完全に活用するために,包括的学習パイプラインをケースド方式で構築する。
4つの3次元容器セグメンテーションデータセットの大規模な実験により,本手法の有効性と優位性を実証した。
さらに,曲面平面再構成画像の可視化により,提案手法の臨床的意義が検証された。
コードをhttps://github.com/barry664/DeformCLでリリースします。
関連論文リスト
- Self-adaptive vision-language model for 3D segmentation of pulmonary artery and vein [18.696258519327095]
本稿では,言語誘導型自己適応型クロスアテンション・フュージョン・フレームワークを提案する。
提案手法は,3次元CTスキャンのセグメンテーションを生成するための強力な特徴抽出器として,事前訓練したCLIPを採用している。
これまでで最大の肺動脈ベインCTデータセットである局所的データセットを用いて,本手法を広範囲に検証した。
論文 参考訳(メタデータ) (2025-01-07T12:03:02Z) - KLDD: Kalman Filter based Linear Deformable Diffusion Model in Retinal Image Segmentation [51.03868117057726]
本稿では,網膜血管分割のためのKLDDモデルを提案する。
我々のモデルは、変形可能な畳み込みの柔軟な受容場を利用して、分割を反復的に洗練する拡散過程を用いる。
実験は網膜基底画像データセット(DRIVE,CHASE_DB1)とOCTA-500データセットの3mm,6mmで評価された。
論文 参考訳(メタデータ) (2024-09-19T14:21:38Z) - ReshapeIT: Reliable Shape Interaction with Implicit Template for Anatomical Structure Reconstruction [59.971808117043366]
ReShapeITは、同じカテゴリ内で共有される暗黙のテンプレートフィールドを持つ解剖学的構造を表す。
これにより、インスタンス形状とテンプレート形状との対応性の制約を強化することにより、暗黙テンプレートフィールドが有効なテンプレートを生成する。
テンプレートインタラクションモジュールは、有効なテンプレートシェイプとインスタンスワイドの潜在コードとを相互作用することで、目に見えないシェイプを再構築するために導入される。
論文 参考訳(メタデータ) (2023-12-11T07:09:32Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
本研究は、3Dラジオグラフィ画像のための効果的な事前学習フレームワークの設計に焦点をあてる。
ローカルマスキングと低レベルの摂動の組み合わせによって生成された破壊から、オリジナルのイメージを再構築しようとする事前トレーニングフレームワークであるDisruptive Autoencodersを紹介する。
提案する事前トレーニングフレームワークは、複数のダウンストリームタスクでテストされ、最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-07-31T17:59:42Z) - SwIPE: Efficient and Robust Medical Image Segmentation with Implicit Patch Embeddings [12.79344668998054]
正確な局所境界線とグローバルな形状コヒーレンスを実現するために,SwIPE(Segmentation with Implicit Patch Embeddings)を提案する。
その結果,最近の暗黙的アプローチよりもSwIPEは大幅に改善され,パラメータが10倍以上の最先端の離散手法よりも優れていた。
論文 参考訳(メタデータ) (2023-07-23T20:55:11Z) - Learning Hybrid Representations for Automatic 3D Vessel Centerline
Extraction [57.74609918453932]
3次元医用画像からの血管の自動抽出は血管疾患の診断に不可欠である。
既存の方法では、3次元画像からそのような細い管状構造を分割する際に、抽出された容器の不連続に悩まされることがある。
抽出された船舶の連続性を維持するためには、地球的幾何学を考慮に入れる必要があると論じる。
この課題を解決するためのハイブリッド表現学習手法を提案します。
論文 参考訳(メタデータ) (2020-12-14T05:22:49Z) - Weakly-supervised Learning For Catheter Segmentation in 3D Frustum
Ultrasound [74.22397862400177]
超音波を用いた新しいカテーテルセグメンテーション法を提案する。
提案手法は,1ボリュームあたり0.25秒の効率で最先端の性能を実現した。
論文 参考訳(メタデータ) (2020-10-19T13:56:22Z) - Rethinking the Extraction and Interaction of Multi-Scale Features for
Vessel Segmentation [53.187152856583396]
網膜血管と主要動脈を2次元基底画像と3次元CTアンギオグラフィー(CTA)スキャンで分割する,PC-Netと呼ばれる新しいディープラーニングモデルを提案する。
PC-Netでは、ピラミッド圧縮励起(PSE)モジュールが各畳み込みブロックに空間情報を導入し、より効果的なマルチスケール特徴を抽出する能力を高めている。
論文 参考訳(メタデータ) (2020-10-09T08:22:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。