CryoFastAR: Fast Cryo-EM Ab Initio Reconstruction Made Easy
- URL: http://arxiv.org/abs/2506.05864v1
- Date: Fri, 06 Jun 2025 08:32:32 GMT
- Title: CryoFastAR: Fast Cryo-EM Ab Initio Reconstruction Made Easy
- Authors: Jiakai Zhang, Shouchen Zhou, Haizhao Dai, Xinhang Liu, Peihao Wang, Zhiwen Fan, Yuan Pei, Jingyi Yu,
- Abstract summary: We introduce CryoFastAR, the first geometric foundation model that can directly predict poses from Cryo-EM noisy images for Fast ab initio Reconstruction.<n>By integrating multi-view features and training on large-scale simulated cryo-EM data with realistic noise and CTF modulations, CryoFastAR enhances pose estimation accuracy and generalization.
- Score: 43.706580683273955
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pose estimation from unordered images is fundamental for 3D reconstruction, robotics, and scientific imaging. Recent geometric foundation models, such as DUSt3R, enable end-to-end dense 3D reconstruction but remain underexplored in scientific imaging fields like cryo-electron microscopy (cryo-EM) for near-atomic protein reconstruction. In cryo-EM, pose estimation and 3D reconstruction from unordered particle images still depend on time-consuming iterative optimization, primarily due to challenges such as low signal-to-noise ratios (SNR) and distortions from the contrast transfer function (CTF). We introduce CryoFastAR, the first geometric foundation model that can directly predict poses from Cryo-EM noisy images for Fast ab initio Reconstruction. By integrating multi-view features and training on large-scale simulated cryo-EM data with realistic noise and CTF modulations, CryoFastAR enhances pose estimation accuracy and generalization. To enhance training stability, we propose a progressive training strategy that first allows the model to extract essential features under simpler conditions before gradually increasing difficulty to improve robustness. Experiments show that CryoFastAR achieves comparable quality while significantly accelerating inference over traditional iterative approaches on both synthetic and real datasets.
Related papers
- CryoGS: Gaussian Splatting for Cryo-EM Homogeneous Reconstruction [55.2480439325792]
cryogenic electron microscopy (cryo-EM) facilitates the determination of macromolecular structures at near-atomic resolution.<n>The core computational task in single-particle cryo-EM is to reconstruct the 3D electrostatic potential of a molecule.<n>We introduce cryoGS, a GMM-based method that integrates Gaussian splatting with the physics of cryo-EM image formation.
arXiv Detail & Related papers (2025-08-06T23:24:43Z) - DGS-LRM: Real-Time Deformable 3D Gaussian Reconstruction From Monocular Videos [52.46386528202226]
We introduce the Deformable Gaussian Splats Large Reconstruction Model (DGS-LRM)<n>It is the first feed-forward method predicting deformable 3D Gaussian splats from a monocular posed video of any dynamic scene.<n>It achieves performance on par with state-of-the-art monocular video 3D tracking methods.
arXiv Detail & Related papers (2025-06-11T17:59:58Z) - RobustSplat: Decoupling Densification and Dynamics for Transient-Free 3DGS [79.15416002879239]
3D Gaussian Splatting has gained significant attention for its real-time, photo-realistic rendering in novel-view synthesis and 3D modeling.<n>Existing methods struggle with accurately modeling scenes affected by transient objects, leading to artifacts in the rendered images.<n>We propose RobustSplat, a robust solution based on two critical designs.
arXiv Detail & Related papers (2025-06-03T11:13:48Z) - HORT: Monocular Hand-held Objects Reconstruction with Transformers [61.36376511119355]
Reconstructing hand-held objects in 3D from monocular images is a significant challenge in computer vision.<n>We propose a transformer-based model to efficiently reconstruct dense 3D point clouds of hand-held objects.<n>Our method achieves state-of-the-art accuracy with much faster inference speed, while generalizing well to in-the-wild images.
arXiv Detail & Related papers (2025-03-27T09:45:09Z) - CryoSPIN: Improving Ab-Initio Cryo-EM Reconstruction with Semi-Amortized Pose Inference [30.195615398809043]
Cryo-EM is an increasingly popular method for determining the atomic resolution 3D structure of macromolecular complexes.
Recent developments in cryo-EM have focused on deep learning for which amortized inference has been used to predict pose.
Here, we propose a new semi-amortized method, cryoSPIN, in which reconstruction begins with amortized inference and then switches to a form of auto-decoding.
arXiv Detail & Related papers (2024-06-15T00:44:32Z) - Event3DGS: Event-Based 3D Gaussian Splatting for High-Speed Robot Egomotion [54.197343533492486]
Event3DGS can reconstruct high-fidelity 3D structure and appearance under high-speed egomotion.
Experiments on multiple synthetic and real-world datasets demonstrate the superiority of Event3DGS compared with existing event-based dense 3D scene reconstruction frameworks.
Our framework also allows one to incorporate a few motion-blurred frame-based measurements into the reconstruction process to further improve appearance fidelity without loss of structural accuracy.
arXiv Detail & Related papers (2024-06-05T06:06:03Z) - CryoGEM: Physics-Informed Generative Cryo-Electron Microscopy [38.57626501108458]
We introduce physics-informed generative cryo-electron microscopy (CryoGEM)
CryoGEM integrates physics-based cryo-EM simulation with a generative unpaired noise translation to generate realistic noises.
Experiments show that CryoGEM is capable of generating authentic cryo-EM images.
arXiv Detail & Related papers (2023-12-04T07:52:56Z) - Latent Diffusion Prior Enhanced Deep Unfolding for Snapshot Spectral Compressive Imaging [17.511583657111792]
Snapshot spectral imaging reconstruction aims to reconstruct three-dimensional spatial-spectral images from a single-shot two-dimensional compressed measurement.
We introduce a generative model, namely the latent diffusion model (LDM), to generate degradation-free prior to deep unfolding method.
arXiv Detail & Related papers (2023-11-24T04:55:20Z) - CryoFormer: Continuous Heterogeneous Cryo-EM Reconstruction using
Transformer-based Neural Representations [49.49939711956354]
Cryo-electron microscopy (cryo-EM) allows for the high-resolution reconstruction of 3D structures of proteins and other biomolecules.
It is still challenging to reconstruct the continuous motions of 3D structures from noisy and randomly oriented 2D cryo-EM images.
We propose CryoFormer, a new approach for continuous heterogeneous cryo-EM reconstruction.
arXiv Detail & Related papers (2023-03-28T18:59:17Z) - CryoAI: Amortized Inference of Poses for Ab Initio Reconstruction of 3D
Molecular Volumes from Real Cryo-EM Images [30.738209997049395]
We introduce cryoAI, an ab initio reconstruction algorithm for homogeneous conformations that uses gradient-based optimization of particle poses and the electron scattering potential from single-particle cryo-EM data.
CryoAI achieves results on par with state-of-the-art cryo-EM solvers for both simulated and experimental data, one order of magnitude faster for large datasets and with significantly lower memory requirements than existing methods.
arXiv Detail & Related papers (2022-03-15T17:58:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.