A Driving Regime-Embedded Deep Learning Framework for Modeling Intra-Driver Heterogeneity in Multi-Scale Car-Following Dynamics
- URL: http://arxiv.org/abs/2506.05902v1
- Date: Fri, 06 Jun 2025 09:19:33 GMT
- Title: A Driving Regime-Embedded Deep Learning Framework for Modeling Intra-Driver Heterogeneity in Multi-Scale Car-Following Dynamics
- Authors: Shirui Zhou, Jiying Yan, Junfang Tian, Tao Wang, Yongfu Li, Shiquan Zhong,
- Abstract summary: We propose a novel data-driven car-following framework that embeds discrete driving regimes into vehicular motion predictions.<n>The proposed hybrid deep learning architecture combines Gated Recurrent Units for discrete driving regime classification with Long Short-Term Memory networks for continuous kinematic prediction.<n>The framework significantly reduces prediction errors for acceleration (maximum MSE improvement reached 58.47%), speed, and spacing metrics while reproducing critical traffic phenomena.
- Score: 5.579243411257874
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A fundamental challenge in car-following modeling lies in accurately representing the multi-scale complexity of driving behaviors, particularly the intra-driver heterogeneity where a single driver's actions fluctuate dynamically under varying conditions. While existing models, both conventional and data-driven, address behavioral heterogeneity to some extent, they often emphasize inter-driver heterogeneity or rely on simplified assumptions, limiting their ability to capture the dynamic heterogeneity of a single driver under different driving conditions. To address this gap, we propose a novel data-driven car-following framework that systematically embeds discrete driving regimes (e.g., steady-state following, acceleration, cruising) into vehicular motion predictions. Leveraging high-resolution traffic trajectory datasets, the proposed hybrid deep learning architecture combines Gated Recurrent Units for discrete driving regime classification with Long Short-Term Memory networks for continuous kinematic prediction, unifying discrete decision-making processes and continuous vehicular dynamics to comprehensively represent inter- and intra-driver heterogeneity. Driving regimes are identified using a bottom-up segmentation algorithm and Dynamic Time Warping, ensuring robust characterization of behavioral states across diverse traffic scenarios. Comparative analyses demonstrate that the framework significantly reduces prediction errors for acceleration (maximum MSE improvement reached 58.47\%), speed, and spacing metrics while reproducing critical traffic phenomena, such as stop-and-go wave propagation and oscillatory dynamics.
Related papers
- Markov Regime-Switching Intelligent Driver Model for Interpretable Car-Following Behavior [19.229274803939983]
We introduce a regime-switching framework that allows driving behavior to be governed by different IDM parameter sets.<n>We instantiate the framework using a Factorial Hidden Markov Model with IDM dynamics.
arXiv Detail & Related papers (2025-06-17T17:55:42Z) - Characterized Diffusion Networks for Enhanced Autonomous Driving Trajectory Prediction [0.6202955567445396]
We present a novel trajectory prediction model for autonomous driving.
Our model enhances the accuracy and reliability of trajectory predictions by incorporating uncertainty estimation and complex agent interactions.
The proposed model showcases strong potential for application in real-world autonomous driving systems.
arXiv Detail & Related papers (2024-11-25T15:03:44Z) - FollowGen: A Scaled Noise Conditional Diffusion Model for Car-Following Trajectory Prediction [9.2729178775419]
This study introduces a scaled noise conditional diffusion model for car-following trajectory prediction.
It integrates detailed inter-vehicular interactions and car-following dynamics into a generative framework, improving the accuracy and plausibility of predicted trajectories.
Experimental results on diverse real-world driving scenarios demonstrate the state-of-the-art performance and robustness of the proposed method.
arXiv Detail & Related papers (2024-11-23T23:13:45Z) - Hypergraph-based Motion Generation with Multi-modal Interaction Relational Reasoning [13.294396870431399]
Real-world driving environments are characterized by dynamic and diverse interactions among vehicles.
This research introduces an integrated framework for autonomous vehicles (AVs) motion prediction.
arXiv Detail & Related papers (2024-09-18T03:30:38Z) - DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving [55.53171248839489]
We propose an ego-centric fully sparse paradigm, named DiFSD, for end-to-end self-driving.<n>Specifically, DiFSD mainly consists of sparse perception, hierarchical interaction and iterative motion planner.<n>Experiments conducted on nuScenes and Bench2Drive datasets demonstrate the superior planning performance and great efficiency of DiFSD.
arXiv Detail & Related papers (2024-09-15T15:55:24Z) - MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
We propose an adaptable personalized car-following framework - MetaFollower.
We first utilize Model-Agnostic Meta-Learning (MAML) to extract common driving knowledge from various CF events.
We additionally combine Long Short-Term Memory (LSTM) and Intelligent Driver Model (IDM) to reflect temporal heterogeneity with high interpretability.
arXiv Detail & Related papers (2024-06-23T15:30:40Z) - Probing Multimodal LLMs as World Models for Driving [72.18727651074563]
We look at the application of Multimodal Large Language Models (MLLMs) in autonomous driving.
Despite advances in models like GPT-4o, their performance in complex driving environments remains largely unexplored.
arXiv Detail & Related papers (2024-05-09T17:52:42Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
This paper introduces RACER, a cutting-edge deep learning car-following model to predict Adaptive Cruise Control (ACC) driving behavior.
Unlike conventional models, RACER effectively integrates Rational Driving Constraints (RDCs), crucial tenets of actual driving.
RACER excels across key metrics, such as acceleration, velocity, and spacing, registering zero violations.
arXiv Detail & Related papers (2023-12-12T06:21:30Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
A longstanding challenge for self-driving development is simulating dynamic driving scenarios seeded from recorded driving logs.
We apply tools from discrete sequence modeling to model how vehicles, pedestrians and cyclists interact in driving scenarios.
Our model tops the Sim Agents Benchmark, surpassing prior work along the realism meta metric by 3.3% and along the interaction metric by 9.9%.
arXiv Detail & Related papers (2023-12-07T18:53:27Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
We propose three auxiliary tasks with relational-temporal reasoning and integrate them into the standard Deep Learning framework.
These auxiliary tasks provide additional supervision signals to infer the behavior patterns other interactive agents.
Our approach achieves robust and state-of-the-art performance in terms of standard evaluation metrics.
arXiv Detail & Related papers (2023-11-27T18:57:42Z) - Graph-Based Interaction-Aware Multimodal 2D Vehicle Trajectory
Prediction using Diffusion Graph Convolutional Networks [17.989423104706397]
This study presents the Graph-based Interaction-aware Multi-modal Trajectory Prediction framework.
Within this framework, vehicles' motions are conceptualized as nodes in a time-varying graph, and the traffic interactions are represented by a dynamic adjacency matrix.
We employ a driving intention-specific feature fusion, enabling the adaptive integration of historical and future embeddings.
arXiv Detail & Related papers (2023-09-05T06:28:13Z) - Objective-aware Traffic Simulation via Inverse Reinforcement Learning [31.26257563160961]
We formulate traffic simulation as an inverse reinforcement learning problem.
We propose a parameter sharing adversarial inverse reinforcement learning model for dynamics-robust simulation learning.
Our proposed model is able to imitate a vehicle's trajectories in the real world while simultaneously recovering the reward function.
arXiv Detail & Related papers (2021-05-20T07:26:34Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
Control of traffic signals is fundamental and critical to alleviate traffic congestion in urban areas.
Because of the high complexity of modelling the problem, experimental settings of current works are often inconsistent.
We propose a novel and strong baseline model based on deep reinforcement learning with the encoder-decoder structure.
arXiv Detail & Related papers (2021-01-24T03:55:39Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
We propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) to improve the accuracy of long-term traffic forecasting.
Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies.
The proposed model enables fast and scalable training over a long range spatial-temporal dependencies.
arXiv Detail & Related papers (2020-01-09T10:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.