Markov Regime-Switching Intelligent Driver Model for Interpretable Car-Following Behavior
- URL: http://arxiv.org/abs/2506.14762v1
- Date: Tue, 17 Jun 2025 17:55:42 GMT
- Title: Markov Regime-Switching Intelligent Driver Model for Interpretable Car-Following Behavior
- Authors: Chengyuan Zhang, Cathy Wu, Lijun Sun,
- Abstract summary: We introduce a regime-switching framework that allows driving behavior to be governed by different IDM parameter sets.<n>We instantiate the framework using a Factorial Hidden Markov Model with IDM dynamics.
- Score: 19.229274803939983
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate and interpretable car-following models are essential for traffic simulation and autonomous vehicle development. However, classical models like the Intelligent Driver Model (IDM) are fundamentally limited by their parsimonious and single-regime structure. They fail to capture the multi-modal nature of human driving, where a single driving state (e.g., speed, relative speed, and gap) can elicit many different driver actions. This forces the model to average across distinct behaviors, reducing its fidelity and making its parameters difficult to interpret. To overcome this, we introduce a regime-switching framework that allows driving behavior to be governed by different IDM parameter sets, each corresponding to an interpretable behavioral mode. This design enables the model to dynamically switch between interpretable behavioral modes, rather than averaging across diverse driving contexts. We instantiate the framework using a Factorial Hidden Markov Model with IDM dynamics (FHMM-IDM), which explicitly separates intrinsic driving regimes (e.g., aggressive acceleration, steady-state following) from external traffic scenarios (e.g., free-flow, congestion, stop-and-go) through two independent latent Markov processes. Bayesian inference via Markov chain Monte Carlo (MCMC) is used to jointly estimate the regime-specific parameters, transition dynamics, and latent state trajectories. Experiments on the HighD dataset demonstrate that FHMM-IDM uncovers interpretable structure in human driving, effectively disentangling internal driver actions from contextual traffic conditions and revealing dynamic regime-switching patterns. This framework provides a tractable and principled solution to modeling context-dependent driving behavior under uncertainty, offering improvements in the fidelity of traffic simulations, the efficacy of safety analyses, and the development of more human-centric ADAS.
Related papers
- When Context Is Not Enough: Modeling Unexplained Variability in Car-Following Behavior [22.102157707436884]
Traditional deterministic models often fail to capture the full extent of variability and unpredictability in human driving.<n>This study introduces an interpretable modeling framework that captures not only context-dependent dynamics but also residual variability beyond what context can explain.<n>The integration of interpretability and accuracy makes this framework a promising tool for traffic analysis and safety-critical applications.
arXiv Detail & Related papers (2025-07-09T16:42:41Z) - Game-Theoretic Modeling of Vehicle Unprotected Left Turns Considering Drivers' Bounded Rationality [17.5324678856791]
We propose a novel decision-making model for vehicle unprotected left-turn scenarios.<n>Our model integrates game theory with considerations for drivers' bounded rationality.<n>Our findings contribute valuable insights into the vehicle decision-making behaviors with bounded rationality.
arXiv Detail & Related papers (2025-07-02T02:22:11Z) - A Driving Regime-Embedded Deep Learning Framework for Modeling Intra-Driver Heterogeneity in Multi-Scale Car-Following Dynamics [5.579243411257874]
We propose a novel data-driven car-following framework that embeds discrete driving regimes into vehicular motion predictions.<n>The proposed hybrid deep learning architecture combines Gated Recurrent Units for discrete driving regime classification with Long Short-Term Memory networks for continuous kinematic prediction.<n>The framework significantly reduces prediction errors for acceleration (maximum MSE improvement reached 58.47%), speed, and spacing metrics while reproducing critical traffic phenomena.
arXiv Detail & Related papers (2025-06-06T09:19:33Z) - MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
We propose an adaptable personalized car-following framework - MetaFollower.
We first utilize Model-Agnostic Meta-Learning (MAML) to extract common driving knowledge from various CF events.
We additionally combine Long Short-Term Memory (LSTM) and Intelligent Driver Model (IDM) to reflect temporal heterogeneity with high interpretability.
arXiv Detail & Related papers (2024-06-23T15:30:40Z) - Probing Multimodal LLMs as World Models for Driving [72.18727651074563]
We look at the application of Multimodal Large Language Models (MLLMs) in autonomous driving.
Despite advances in models like GPT-4o, their performance in complex driving environments remains largely unexplored.
arXiv Detail & Related papers (2024-05-09T17:52:42Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
This paper introduces RACER, a cutting-edge deep learning car-following model to predict Adaptive Cruise Control (ACC) driving behavior.
Unlike conventional models, RACER effectively integrates Rational Driving Constraints (RDCs), crucial tenets of actual driving.
RACER excels across key metrics, such as acceleration, velocity, and spacing, registering zero violations.
arXiv Detail & Related papers (2023-12-12T06:21:30Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
A longstanding challenge for self-driving development is simulating dynamic driving scenarios seeded from recorded driving logs.
We apply tools from discrete sequence modeling to model how vehicles, pedestrians and cyclists interact in driving scenarios.
Our model tops the Sim Agents Benchmark, surpassing prior work along the realism meta metric by 3.3% and along the interaction metric by 9.9%.
arXiv Detail & Related papers (2023-12-07T18:53:27Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
We propose three auxiliary tasks with relational-temporal reasoning and integrate them into the standard Deep Learning framework.
These auxiliary tasks provide additional supervision signals to infer the behavior patterns other interactive agents.
Our approach achieves robust and state-of-the-art performance in terms of standard evaluation metrics.
arXiv Detail & Related papers (2023-11-27T18:57:42Z) - Automatic Identification of Driving Maneuver Patterns using a Robust
Hidden Semi-Markov Models [14.418658265828586]
A new robust HDP-HSMM (rHDP-HSMM) method is proposed to reduce the number of redundant states and improve the consistency of the model's estimation.
Both a simulation study and a case study using naturalistic driving data are presented to demonstrate the effectiveness of the proposed rHDP-HSMM.
arXiv Detail & Related papers (2023-11-13T18:13:55Z) - On Learning the Tail Quantiles of Driving Behavior Distributions via
Quantile Regression and Flows [13.540998552232006]
We consider the problem of learning models that accurately capture the diversity and tail quantiles of human driver behavior probability distributions.
We adapt two flexible quantile learning frameworks for this setting that avoid strong distributional assumptions.
We evaluate our approach in a one-step acceleration prediction task, and in multi-step driver simulation rollouts.
arXiv Detail & Related papers (2023-05-22T15:09:04Z) - Model-Based Reinforcement Learning with Isolated Imaginations [61.67183143982074]
We propose Iso-Dream++, a model-based reinforcement learning approach.
We perform policy optimization based on the decoupled latent imaginations.
This enables long-horizon visuomotor control tasks to benefit from isolating mixed dynamics sources in the wild.
arXiv Detail & Related papers (2023-03-27T02:55:56Z) - Guided Conditional Diffusion for Controllable Traffic Simulation [42.198185904248994]
Controllable and realistic traffic simulation is critical for developing and verifying autonomous vehicles.
Data-driven approaches generate realistic and human-like behaviors, improving transfer from simulated to real-world traffic.
We develop a conditional diffusion model for controllable traffic generation (CTG) that allows users to control desired properties of trajectories at test time.
arXiv Detail & Related papers (2022-10-31T14:44:59Z) - Isolating and Leveraging Controllable and Noncontrollable Visual
Dynamics in World Models [65.97707691164558]
We present Iso-Dream, which improves the Dream-to-Control framework in two aspects.
First, by optimizing inverse dynamics, we encourage world model to learn controllable and noncontrollable sources.
Second, we optimize the behavior of the agent on the decoupled latent imaginations of the world model.
arXiv Detail & Related papers (2022-05-27T08:07:39Z) - A Driving Behavior Recognition Model with Bi-LSTM and Multi-Scale CNN [59.57221522897815]
We propose a neural network model based on trajectories information for driving behavior recognition.
We evaluate the proposed model on the public BLVD dataset, achieving a satisfying performance.
arXiv Detail & Related papers (2021-03-01T06:47:29Z) - A Probabilistic Framework for Imitating Human Race Driver Behavior [31.524303667746643]
We propose Probabilistic Modeling of Driver behavior (ProMoD), a modular framework which splits the task of driver behavior modeling into multiple modules.
A global target trajectory distribution is learned with Probabilistic Movement Primitives, clothoids are utilized for local path generation, and the corresponding choice of actions is performed by a neural network.
Experiments in a simulated car racing setting show considerable advantages in imitation accuracy and robustness compared to other imitation learning algorithms.
arXiv Detail & Related papers (2020-01-22T20:06:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.