論文の概要: On Efficient Estimation of Distributional Treatment Effects under Covariate-Adaptive Randomization
- arxiv url: http://arxiv.org/abs/2506.05945v1
- Date: Fri, 06 Jun 2025 10:14:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-09 17:28:43.419849
- Title: On Efficient Estimation of Distributional Treatment Effects under Covariate-Adaptive Randomization
- Title(参考訳): 共変量適応ランダム化による分散処理効果の効率的な推定法について
- Authors: Undral Byambadalai, Tomu Hirata, Tatsushi Oka, Shota Yasui,
- Abstract要約: 既製の機械学習手法を利用したフレキシブルな分散回帰フレームワークを提案する。
提案する推定器の分布を確立し,有効な推論手順を導入する。
- 参考スコア(独自算出の注目度): 6.324765782436764
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper focuses on the estimation of distributional treatment effects in randomized experiments that use covariate-adaptive randomization (CAR). These include designs such as Efron's biased-coin design and stratified block randomization, where participants are first grouped into strata based on baseline covariates and assigned treatments within each stratum to ensure balance across groups. In practice, datasets often contain additional covariates beyond the strata indicators. We propose a flexible distribution regression framework that leverages off-the-shelf machine learning methods to incorporate these additional covariates, enhancing the precision of distributional treatment effect estimates. We establish the asymptotic distribution of the proposed estimator and introduce a valid inference procedure. Furthermore, we derive the semiparametric efficiency bound for distributional treatment effects under CAR and demonstrate that our regression-adjusted estimator attains this bound. Simulation studies and empirical analyses of microcredit programs highlight the practical advantages of our method.
- Abstract(参考訳): 本稿では,共変量適応ランダム化(CAR)を用いたランダム化実験における分布的処理効果の推定に着目する。
例えば、Efronのバイアス-コイン設計や階層化されたブロックランダム化(英語版)のような設計では、参加者はまずベースラインの共変量に基づいて層にグループ化され、各層に割り当てられた治療によってグループ間のバランスが確保される。
実際には、データセットは、しばしば成層指標を超えて余分な共変量を含む。
本稿では,これら余分な共変量を統合するために,既製の機械学習手法を活用するフレキシブルな分散回帰フレームワークを提案し,分布処理効果推定の精度を向上する。
提案した推定器の漸近分布を確立し,有効な推論手順を導入する。
さらに, CAR 下での分散処理効果に対する半パラメトリック効率を導出し, 回帰調整型推定器がこの限界に達することを示す。
マイクロクレジットプログラムのシミュレーション研究と実証分析は,本手法の実用的利点を浮き彫りにした。
関連論文リスト
- A Generative Framework for Causal Estimation via Importance-Weighted Diffusion Distillation [55.53426007439564]
観察データから個別化された治療効果を推定することは因果推論における中心的な課題である。
逆確率重み付け(IPW)は、この問題に対するよく確立された解決策であるが、現代のディープラーニングフレームワークへの統合は依然として限られている。
本稿では,拡散モデルの事前学習と重み付きスコア蒸留を組み合わせた新しい生成フレームワークであるIWDDを提案する。
論文 参考訳(メタデータ) (2025-05-16T17:00:52Z) - Semiparametric conformal prediction [79.6147286161434]
ベクトル値の非整合性スコアの結合相関構造を考慮した共形予測セットを構築する。
スコアの累積分布関数(CDF)を柔軟に推定する。
提案手法は,現実の回帰問題に対して,所望のカバレッジと競争効率をもたらす。
論文 参考訳(メタデータ) (2024-11-04T14:29:02Z) - Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction [6.909352249236339]
ランダム化実験における分散処理効果パラメータを推定するための新しい回帰調整法を提案する。
提案手法では,事前処理による協調処理を分散回帰フレームワークに組み込み,機械学習技術を用いて分散処理効果推定器の精度を向上させる。
論文 参考訳(メタデータ) (2024-07-22T20:28:29Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - A Bayesian Semiparametric Method For Estimating Causal Quantile Effects [1.1118668841431563]
擬似分布の任意の関数を推測できる半パラメトリックな条件分布回帰モデルを提案する。
共振調整に二重バランススコアを用いることで, 単一スコアのみの調整よりも性能が向上することを示す。
提案手法をノースカロライナ出生体重データセットに適用し,母体喫煙が幼児の出生体重に与える影響を解析した。
論文 参考訳(メタデータ) (2022-11-03T05:15:18Z) - Random Forest Weighted Local Fréchet Regression with Random Objects [18.128663071848923]
本稿では,新しいランダム森林重み付き局所Fr'echet回帰パラダイムを提案する。
最初の方法は、これらの重みを局所平均として、条件付きFr'echet平均を解くことである。
第二の手法は局所線形Fr'echet回帰を行い、どちらも既存のFr'echet回帰法を大幅に改善した。
論文 参考訳(メタデータ) (2022-02-10T09:10:59Z) - Two-Stage TMLE to Reduce Bias and Improve Efficiency in Cluster
Randomized Trials [0.0]
クラスタランダム化トライアル(CRT)は、ランダムに個人グループへの介入を割り当て、それらのグループ内の個人に対する結果を測定する。
クラスタ内の一部の個人には発見が欠落することが多い。
CRTは、しばしば限られた数のクラスターをランダムにし、その結果、腕間のベースライン結果予測器に不均衡をもたらす。
論文 参考訳(メタデータ) (2021-06-29T21:47:30Z) - Deconfounding Scores: Feature Representations for Causal Effect
Estimation with Weak Overlap [140.98628848491146]
推定対象の偏りを伴わずに高い重なりを生じさせる,デコンファウンディングスコアを導入する。
分離スコアは観測データで識別可能なゼロ共分散条件を満たすことを示す。
特に,この手法が標準正規化の魅力的な代替となることを示す。
論文 参考訳(メタデータ) (2021-04-12T18:50:11Z) - Weighting-Based Treatment Effect Estimation via Distribution Learning [14.438302755258547]
本研究では,処理効果推定のための分布学習に基づく重み付け手法を開発した。
提案手法は,最先端の重み付けのみのベンチマーク手法よりも優れている。
2倍のロス率推定フレームワークの下では、その優位性を維持している。
論文 参考訳(メタデータ) (2020-12-26T20:15:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。