RETENTION: Resource-Efficient Tree-Based Ensemble Model Acceleration with Content-Addressable Memory
- URL: http://arxiv.org/abs/2506.05994v1
- Date: Fri, 06 Jun 2025 11:25:51 GMT
- Title: RETENTION: Resource-Efficient Tree-Based Ensemble Model Acceleration with Content-Addressable Memory
- Authors: Yi-Chun Liao, Chieh-Lin Tsai, Yuan-Hao Chang, Camélia Slimani, Jalil Boukhobza, Tei-Wei Kuo,
- Abstract summary: RETENTION is an end-to-end framework that significantly reduces CAM capacity requirement for tree-based model inference.<n>We present a tree mapping scheme that incorporates two innovative data placement strategies to alleviate the memory redundancy caused by the widespread use of don't care states in CAM.
- Score: 9.502789435634975
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although deep learning has demonstrated remarkable capabilities in learning from unstructured data, modern tree-based ensemble models remain superior in extracting relevant information and learning from structured datasets. While several efforts have been made to accelerate tree-based models, the inherent characteristics of the models pose significant challenges for conventional accelerators. Recent research leveraging content-addressable memory (CAM) offers a promising solution for accelerating tree-based models, yet existing designs suffer from excessive memory consumption and low utilization. This work addresses these challenges by introducing RETENTION, an end-to-end framework that significantly reduces CAM capacity requirement for tree-based model inference. We propose an iterative pruning algorithm with a novel pruning criterion tailored for bagging-based models (e.g., Random Forest), which minimizes model complexity while ensuring controlled accuracy degradation. Additionally, we present a tree mapping scheme that incorporates two innovative data placement strategies to alleviate the memory redundancy caused by the widespread use of don't care states in CAM. Experimental results show that implementing the tree mapping scheme alone achieves $1.46\times$ to $21.30 \times$ better space efficiency, while the full RETENTION framework yields $4.35\times$ to $207.12\times$ improvement with less than 3% accuracy loss. These results demonstrate that RETENTION is highly effective in reducing CAM capacity requirement, providing a resource-efficient direction for tree-based model acceleration.
Related papers
- A Unified Graph-based Framework for Scalable 3D Tree Reconstruction and Non-Destructive Biomass Estimation from Point Clouds [8.821870725779071]
Estimating forest above-ground biomass (AGB) is crucial for assessing carbon storage and supporting sustainable forest management.<n> Quantitative Structural Model (QSM) offers a non-destructive approach to AGB estimation through 3D tree structural reconstruction.<n>This study presents a novel unified framework that enables end-to-end processing of large-scale point clouds.
arXiv Detail & Related papers (2025-06-18T15:55:47Z) - Lightweight and Post-Training Structured Pruning for On-Device Large Lanaguage Models [11.93284417365518]
We introduce COMP, a lightweight post-training structured pruning method that employs a hybrid-granularity pruning strategy.<n> COMP improves performance by 6.13% on the LLaMA-2-7B model with a 20% pruning ratio compared to LLM-Pruner.
arXiv Detail & Related papers (2025-01-25T16:03:58Z) - Forecasting with Hyper-Trees [50.72190208487953]
Hyper-Trees are designed to learn the parameters of time series models.
By relating the parameters of a target time series model to features, Hyper-Trees also address the issue of parameter non-stationarity.
In this novel approach, the trees first generate informative representations from the input features, which a shallow network then maps to the target model parameters.
arXiv Detail & Related papers (2024-05-13T15:22:15Z) - Accelerating Deep Neural Networks via Semi-Structured Activation
Sparsity [0.0]
Exploiting sparsity in the network's feature maps is one of the ways to reduce its inference latency.
We propose a solution to induce semi-structured activation sparsity exploitable through minor runtime modifications.
Our approach yields a speed improvement of $1.25 times$ with a minimal accuracy drop of $1.1%$ for the ResNet18 model on the ImageNet dataset.
arXiv Detail & Related papers (2023-09-12T22:28:53Z) - SETAR-Tree: A Novel and Accurate Tree Algorithm for Global Time Series
Forecasting [7.206754802573034]
In this paper, we explore the close connections between TAR models and regression trees.
We introduce a new forecasting-specific tree algorithm that trains global Pooled Regression (PR) models in the leaves.
In our evaluation, the proposed tree and forest models are able to achieve significantly higher accuracy than a set of state-of-the-art tree-based algorithms.
arXiv Detail & Related papers (2022-11-16T04:30:42Z) - Secrets of 3D Implicit Object Shape Reconstruction in the Wild [92.5554695397653]
Reconstructing high-fidelity 3D objects from sparse, partial observation is crucial for various applications in computer vision, robotics, and graphics.
Recent neural implicit modeling methods show promising results on synthetic or dense datasets.
But, they perform poorly on real-world data that is sparse and noisy.
This paper analyzes the root cause of such deficient performance of a popular neural implicit model.
arXiv Detail & Related papers (2021-01-18T03:24:48Z) - Growing Deep Forests Efficiently with Soft Routing and Learned
Connectivity [79.83903179393164]
This paper further extends the deep forest idea in several important aspects.
We employ a probabilistic tree whose nodes make probabilistic routing decisions, a.k.a., soft routing, rather than hard binary decisions.
Experiments on the MNIST dataset demonstrate that our empowered deep forests can achieve better or comparable performance than [1],[3].
arXiv Detail & Related papers (2020-12-29T18:05:05Z) - DAIS: Automatic Channel Pruning via Differentiable Annealing Indicator
Search [55.164053971213576]
convolutional neural network has achieved great success in fulfilling computer vision tasks despite large computation overhead.
Structured (channel) pruning is usually applied to reduce the model redundancy while preserving the network structure.
Existing structured pruning methods require hand-crafted rules which may lead to tremendous pruning space.
arXiv Detail & Related papers (2020-11-04T07:43:01Z) - Dynamic Model Pruning with Feedback [64.019079257231]
We propose a novel model compression method that generates a sparse trained model without additional overhead.
We evaluate our method on CIFAR-10 and ImageNet, and show that the obtained sparse models can reach the state-of-the-art performance of dense models.
arXiv Detail & Related papers (2020-06-12T15:07:08Z) - ENTMOOT: A Framework for Optimization over Ensemble Tree Models [57.98561336670884]
ENTMOOT is a framework for integrating tree models into larger optimization problems.
We show how ENTMOOT allows a simple integration of tree models into decision-making and black-box optimization.
arXiv Detail & Related papers (2020-03-10T14:34:07Z) - An Image Enhancing Pattern-based Sparsity for Real-time Inference on
Mobile Devices [58.62801151916888]
We introduce a new sparsity dimension, namely pattern-based sparsity that comprises pattern and connectivity sparsity, and becoming both highly accurate and hardware friendly.
Our approach on the new pattern-based sparsity naturally fits into compiler optimization for highly efficient DNN execution on mobile platforms.
arXiv Detail & Related papers (2020-01-20T16:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.