A Unified Graph-based Framework for Scalable 3D Tree Reconstruction and Non-Destructive Biomass Estimation from Point Clouds
- URL: http://arxiv.org/abs/2506.15577v1
- Date: Wed, 18 Jun 2025 15:55:47 GMT
- Title: A Unified Graph-based Framework for Scalable 3D Tree Reconstruction and Non-Destructive Biomass Estimation from Point Clouds
- Authors: Di Wang, Shi Li,
- Abstract summary: Estimating forest above-ground biomass (AGB) is crucial for assessing carbon storage and supporting sustainable forest management.<n> Quantitative Structural Model (QSM) offers a non-destructive approach to AGB estimation through 3D tree structural reconstruction.<n>This study presents a novel unified framework that enables end-to-end processing of large-scale point clouds.
- Score: 8.821870725779071
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Estimating forest above-ground biomass (AGB) is crucial for assessing carbon storage and supporting sustainable forest management. Quantitative Structural Model (QSM) offers a non-destructive approach to AGB estimation through 3D tree structural reconstruction. However, current QSM methods face significant limitations, as they are primarily designed for individual trees,depend on high-quality point cloud data from terrestrial laser scanning (TLS), and also require multiple pre-processing steps that hinder scalability and practical deployment. This study presents a novel unified framework that enables end-to-end processing of large-scale point clouds using an innovative graph-based pipeline. The proposed approach seamlessly integrates tree segmentation,leaf-wood separation and 3D skeletal reconstruction through dedicated graph operations including pathing and abstracting for tree topology reasoning. Comprehensive validation was conducted on datasets with varying leaf conditions (leaf-on and leaf-off), spatial scales (tree- and plot-level), and data sources (TLS and UAV-based laser scanning, ULS). Experimental results demonstrate strong performance under challenging conditions, particularly in leaf-on scenarios (~20% relative error) and low-density ULS datasets with partial coverage (~30% relative error). These findings indicate that the proposed framework provides a robust and scalable solution for large-scale, non-destructive AGB estimation. It significantly reduces dependency on specialized pre-processing tools and establishes ULS as a viable alternative to TLS. To our knowledge, this is the first method capable of enabling seamless, end-to-end 3D tree reconstruction at operational scales. This advancement substantially improves the feasibility of QSM-based AGB estimation, paving the way for broader applications in forest inventory and climate change research.
Related papers
- An Efficient Machine Learning Framework for Forest Height Estimation from Multi-Polarimetric Multi-Baseline SAR data [2.395410408500006]
This paper introduces FGump, a forest height estimation framework by gradient boosting using multi-channel SAR processing with LiDAR profiles as Ground Truth(GT)<n>It ensures a strong balance between accuracy and computational efficiency, using a limited set of hand-designed features and avoiding heavy preprocessing (e.g., calibration and/or quantization)<n> Experimental results confirm that FGump outperforms State-of-the-Art (SOTA) AI-based and classical methods, achieving higher accuracy and significantly lower training and inference times.
arXiv Detail & Related papers (2025-07-28T13:07:23Z) - Hierarchical Quantized Diffusion Based Tree Generation Method for Hierarchical Representation and Lineage Analysis [49.00783841494125]
HDTree captures tree relationships within a hierarchical latent space using a unified hierarchical codebook and quantized diffusion processes.<n> HDTree's effectiveness is demonstrated through comparisons on both general-purpose and single-cell datasets.<n>These contributions provide a new tool for hierarchical lineage analysis, enabling more accurate and efficient modeling of cellular differentiation paths.
arXiv Detail & Related papers (2025-06-29T15:19:13Z) - Bringing SAM to new heights: Leveraging elevation data for tree crown segmentation from drone imagery [68.69685477556682]
Current monitoring methods involve ground measurements, requiring extensive cost, time and labor.<n>Drone remote sensing and computer vision offer great potential for mapping individual trees from aerial imagery at broad-scale.<n>We compare methods leveraging Segment Anything Model (SAM) for the task of automatic tree crown instance segmentation in high resolution drone imagery.<n>We also study the integration of elevation data into models, in the form of Digital Surface Model (DSM) information, which can readily be obtained at no additional cost from RGB drone imagery.
arXiv Detail & Related papers (2025-06-05T12:43:11Z) - Data Augmentation and Resolution Enhancement using GANs and Diffusion Models for Tree Segmentation [49.13393683126712]
Urban forests play a key role in enhancing environmental quality and supporting biodiversity in cities.<n> accurately detecting trees is challenging due to complex landscapes and the variability in image resolution caused by different satellite sensors or UAV flight altitudes.<n>We propose a novel pipeline that integrates domain adaptation with GANs and Diffusion models to enhance the quality of low-resolution aerial images.
arXiv Detail & Related papers (2025-05-21T03:57:10Z) - A Novel WaveInst-based Network for Tree Trunk Structure Extraction and Pattern Analysis in Forest Inventory [2.793797265684592]
This work proposes a novel WaveInst instance segmentation framework, involving a discrete wavelet transform, to improve tree structure extraction.<n> Experimental results of the proposed model show superior performance on SynthTree43k, CaneTree100, Urban Street and our PoplarDataset.<n>The proposed method achieves a mean average precision of 49.6 and 24.3 for the structure extraction of mature and juvenile trees, respectively, surpassing the existing state-of-the-art method by 9.9.
arXiv Detail & Related papers (2025-05-03T02:19:55Z) - Unsupervised deep learning for semantic segmentation of multispectral LiDAR forest point clouds [1.6633665061166945]
This study proposes a fully unsupervised deep learning method for leaf-wood separation of high-density laser scanning point clouds.<n>GrowSP-ForMS achieved a mean accuracy of 84.3% and a mean intersection over union (mIoU) of 69.6% on our MS test set.
arXiv Detail & Related papers (2025-02-10T07:58:49Z) - Comparative Analysis of Novel View Synthesis and Photogrammetry for 3D Forest Stand Reconstruction and extraction of individual tree parameters [2.153174198957389]
Photogrammetry is commonly used for reconstructing forest scenes but faces challenges like low efficiency and poor quality.
NeRF, while better for canopy regions, may produce errors in ground areas with limited views.
3DGS method generates sparser point clouds, particularly in trunk areas, affecting diameter at breast height (DBH) accuracy.
arXiv Detail & Related papers (2024-10-08T07:53:21Z) - FILP-3D: Enhancing 3D Few-shot Class-incremental Learning with Pre-trained Vision-Language Models [59.13757801286343]
Few-shot class-incremental learning aims to mitigate the catastrophic forgetting issue when a model is incrementally trained on limited data.<n>We introduce the FILP-3D framework with two novel components: the Redundant Feature Eliminator (RFE) for feature space misalignment and the Spatial Noise Compensator (SNC) for significant noise.
arXiv Detail & Related papers (2023-12-28T14:52:07Z) - Tree-Planner: Efficient Close-loop Task Planning with Large Language Models [63.06270302774049]
Tree-Planner reframes task planning with Large Language Models into three distinct phases.
Tree-Planner achieves state-of-the-art performance while maintaining high efficiency.
arXiv Detail & Related papers (2023-10-12T17:59:50Z) - Deep Learning Based 3D Point Cloud Regression for Estimating Forest
Biomass [15.956463815168034]
Knowledge of forest biomass stocks and their development is important for implementing effective climate change mitigation measures.
Remote sensing using airborne LiDAR can be used to measure vegetation biomass at large scale.
We present deep learning systems for predicting wood volume, above-ground biomass (AGB), and subsequently carbon directly from 3D LiDAR point cloud data.
arXiv Detail & Related papers (2021-12-21T16:26:13Z) - Growing Deep Forests Efficiently with Soft Routing and Learned
Connectivity [79.83903179393164]
This paper further extends the deep forest idea in several important aspects.
We employ a probabilistic tree whose nodes make probabilistic routing decisions, a.k.a., soft routing, rather than hard binary decisions.
Experiments on the MNIST dataset demonstrate that our empowered deep forests can achieve better or comparable performance than [1],[3].
arXiv Detail & Related papers (2020-12-29T18:05:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.