Dynamic watermarks in images generated by diffusion models
- URL: http://arxiv.org/abs/2502.08927v1
- Date: Thu, 13 Feb 2025 03:23:17 GMT
- Title: Dynamic watermarks in images generated by diffusion models
- Authors: Yunzhuo Chen, Naveed Akhtar, Nur Al Hasan Haldar, Ajmal Mian,
- Abstract summary: High-fidelity text-to-image diffusion models have revolutionized visual content generation, but their widespread use raises significant ethical concerns.<n>We propose a novel multi-stage watermarking framework for diffusion models, designed to establish copyright and trace generated images back to their source.<n>Our work advances the field of AI-generated content security by providing a scalable solution for model ownership verification and misuse prevention.
- Score: 46.1135899490656
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High-fidelity text-to-image diffusion models have revolutionized visual content generation, but their widespread use raises significant ethical concerns, including intellectual property protection and the misuse of synthetic media. To address these challenges, we propose a novel multi-stage watermarking framework for diffusion models, designed to establish copyright and trace generated images back to their source. Our multi-stage watermarking technique involves embedding: (i) a fixed watermark that is localized in the diffusion model's learned noise distribution and, (ii) a human-imperceptible, dynamic watermark in generates images, leveraging a fine-tuned decoder. By leveraging the Structural Similarity Index Measure (SSIM) and cosine similarity, we adapt the watermark's shape and color to the generated content while maintaining robustness. We demonstrate that our method enables reliable source verification through watermark classification, even when the dynamic watermark is adjusted for content-specific variations. Source model verification is enabled through watermark classification. o support further research, we generate a dataset of watermarked images and introduce a methodology to evaluate the statistical impact of watermarking on generated content.Additionally, we rigorously test our framework against various attack scenarios, demonstrating its robustness and minimal impact on image quality. Our work advances the field of AI-generated content security by providing a scalable solution for model ownership verification and misuse prevention.
Related papers
- Bridging Knowledge Gap Between Image Inpainting and Large-Area Visible Watermark Removal [57.84348166457113]
We introduce a novel feature adapting framework that leverages the representation capacity of a pre-trained image inpainting model.
Our approach bridges the knowledge gap between image inpainting and watermark removal by fusing information of the residual background content beneath watermarks into the inpainting backbone model.
For relieving the dependence on high-quality watermark masks, we introduce a new training paradigm by utilizing coarse watermark masks to guide the inference process.
arXiv Detail & Related papers (2025-04-07T02:37:14Z) - Safe-VAR: Safe Visual Autoregressive Model for Text-to-Image Generative Watermarking [18.251123923955397]
Autoregressive learning has become a dominant approach for text-to-image generation, offering high efficiency and visual quality.
Existing watermarking methods, designed for diffusion models, often struggle to adapt to the sequential nature of VAR models.
We propose Safe- VAR, the first watermarking framework specifically designed for autoregressive text-to-image generation.
arXiv Detail & Related papers (2025-03-14T11:45:10Z) - Spread them Apart: Towards Robust Watermarking of Generated Content [4.332441337407564]
We propose an approach to embed watermarks into the generated content to allow future detection of the generated content and identification of the user who generated it.<n>We prove that watermarks embedded are guaranteed to be robust against additive perturbations of a bounded magnitude.
arXiv Detail & Related papers (2025-02-11T09:23:38Z) - On the Coexistence and Ensembling of Watermarks [93.15379331904602]
We find that various open-source watermarks can coexist with only minor impacts on image quality and decoding robustness.<n>We show how ensembling can increase the overall message capacity and enable new trade-offs between capacity, accuracy, robustness and image quality, without needing to retrain the base models.
arXiv Detail & Related papers (2025-01-29T00:37:06Z) - RoboSignature: Robust Signature and Watermarking on Network Attacks [0.5461938536945723]
We present a novel adversarial fine-tuning attack that disrupts the model's ability to embed the intended watermark.<n>Our findings emphasize the importance of anticipating and defending against potential vulnerabilities in generative systems.
arXiv Detail & Related papers (2024-12-22T04:36:27Z) - Exploiting Watermark-Based Defense Mechanisms in Text-to-Image Diffusion Models for Unauthorized Data Usage [14.985938758090763]
Text-to-image diffusion models, such as Stable Diffusion, have shown exceptional potential in generating high-quality images.<n>Recent studies highlight concerns over the use of unauthorized data in training these models, which may lead to intellectual property infringement or privacy violations.<n>We propose RATTAN, that leverages the diffusion process to conduct controlled image generation on the protected input.
arXiv Detail & Related papers (2024-11-22T22:28:19Z) - Trigger-Based Fragile Model Watermarking for Image Transformation Networks [2.38776871944507]
In fragile watermarking, a sensitive watermark is embedded in an object in a manner such that the watermark breaks upon tampering.
We introduce a novel, trigger-based fragile model watermarking system for image transformation/generation networks.
Our approach, distinct from robust watermarking, effectively verifies the model's source and integrity across various datasets and attacks.
arXiv Detail & Related papers (2024-09-28T19:34:55Z) - Towards Effective User Attribution for Latent Diffusion Models via Watermark-Informed Blending [54.26862913139299]
We introduce a novel framework Towards Effective user Attribution for latent diffusion models via Watermark-Informed Blending (TEAWIB)<n> TEAWIB incorporates a unique ready-to-use configuration approach that allows seamless integration of user-specific watermarks into generative models.<n>Experiments validate the effectiveness of TEAWIB, showcasing the state-of-the-art performance in perceptual quality and attribution accuracy.
arXiv Detail & Related papers (2024-09-17T07:52:09Z) - Certifiably Robust Image Watermark [57.546016845801134]
Generative AI raises many societal concerns such as boosting disinformation and propaganda campaigns.
Watermarking AI-generated content is a key technology to address these concerns.
We propose the first image watermarks with certified robustness guarantees against removal and forgery attacks.
arXiv Detail & Related papers (2024-07-04T17:56:04Z) - JIGMARK: A Black-Box Approach for Enhancing Image Watermarks against Diffusion Model Edits [76.25962336540226]
JIGMARK is a first-of-its-kind watermarking technique that enhances robustness through contrastive learning.
Our evaluation reveals that JIGMARK significantly surpasses existing watermarking solutions in resilience to diffusion-model edits.
arXiv Detail & Related papers (2024-06-06T03:31:41Z) - RAW: A Robust and Agile Plug-and-Play Watermark Framework for AI-Generated Images with Provable Guarantees [33.61946642460661]
This paper introduces a robust and agile watermark detection framework, dubbed as RAW.
We employ a classifier that is jointly trained with the watermark to detect the presence of the watermark.
We show that the framework provides provable guarantees regarding the false positive rate for misclassifying a watermarked image.
arXiv Detail & Related papers (2024-01-23T22:00:49Z) - T2IW: Joint Text to Image & Watermark Generation [74.20148555503127]
We introduce a novel task for the joint generation of text to image and watermark (T2IW)
This T2IW scheme ensures minimal damage to image quality when generating a compound image by forcing the semantic feature and the watermark signal to be compatible in pixels.
We demonstrate remarkable achievements in image quality, watermark invisibility, and watermark robustness, supported by our proposed set of evaluation metrics.
arXiv Detail & Related papers (2023-09-07T16:12:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.