Diffusion-Based Hierarchical Graph Neural Networks for Simulating Nonlinear Solid Mechanics
- URL: http://arxiv.org/abs/2506.06045v1
- Date: Fri, 06 Jun 2025 12:46:36 GMT
- Title: Diffusion-Based Hierarchical Graph Neural Networks for Simulating Nonlinear Solid Mechanics
- Authors: Tobias Würth, Niklas Freymuth, Gerhard Neumann, Luise Kärger,
- Abstract summary: Rolling Diffusion-Batched Inference Network (ROBIN) is a novel learned simulator that integrates two key innovations.<n>It captures both fine-scale local dynamics and global structural effects critical for phenomena like beam bending or multi-body contact.<n>ROBIN achieves state-of-the-art accuracy on all tasks, substantially outperforming existing next-step learned simulators.
- Score: 13.41003911618347
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph-based learned simulators have emerged as a promising approach for simulating physical systems on unstructured meshes, offering speed and generalization across diverse geometries. However, they often struggle with capturing global phenomena, such as bending or long-range correlations, and suffer from error accumulation over long rollouts due to their reliance on local message passing and direct next-step prediction. We address these limitations by introducing the Rolling Diffusion-Batched Inference Network (ROBIN), a novel learned simulator that integrates two key innovations: (i) Rolling Diffusion, a parallelized inference scheme that amortizes the cost of diffusion-based refinement across physical time steps by overlapping denoising steps across a temporal window. (ii) A Hierarchical Graph Neural Network built on algebraic multigrid coarsening, enabling multiscale message passing across different mesh resolutions. This architecture, implemented via Algebraic-hierarchical Message Passing Networks, captures both fine-scale local dynamics and global structural effects critical for phenomena like beam bending or multi-body contact. We validate ROBIN on challenging 2D and 3D solid mechanics benchmarks involving geometric, material, and contact nonlinearities. ROBIN achieves state-of-the-art accuracy on all tasks, substantially outperforming existing next-step learned simulators while reducing inference time by up to an order of magnitude compared to standard diffusion simulators.
Related papers
- World Model-Based Learning for Long-Term Age of Information Minimization in Vehicular Networks [53.98633183204453]
In this paper, a novel world model-based learning framework is proposed to minimize packet-completeness-aware age of information (CAoI) in a vehicular network.<n>A world model framework is proposed to jointly learn a dynamic model of the mmWave V2X environment and use it to imagine trajectories for learning how to perform link scheduling.<n>In particular, the long-term policy is learned in differentiable imagined trajectories instead of environment interactions.
arXiv Detail & Related papers (2025-05-03T06:23:18Z) - Equi-Euler GraphNet: An Equivariant, Temporal-Dynamics Informed Graph Neural Network for Dual Force and Trajectory Prediction in Multi-Body Systems [5.442686600296734]
We propose Equi-Euler GraphNet, a physics-informed graph neural network (GNN) that simultaneously predicts internal forces and global trajectories in multi-body systems.<n> Equi-Euler GraphNet generalizes beyond the training distribution, accurately predicting loads and trajectories under unseen speeds, loads, and configurations.<n>It outperforms state-of-the-art GNNs focused on trajectory prediction, delivering stable rollouts over thousands of time steps with minimal error accumulation.
arXiv Detail & Related papers (2025-04-18T16:09:57Z) - Accelerating Multiscale Modeling with Hybrid Solvers: Coupling FEM and Neural Operators with Domain Decomposition [3.0635300721402228]
This work introduces a novel hybrid framework that integrates PI-NO with finite element method (FE) through domain decomposition.<n>The framework efficacy has been validated across a range of problems, spanning static, quasi-static, and dynamic regimes.<n>Our study shows that our hybrid solver: (1) maintains solution continuity across subdomain interfaces, (2) reduces computational costs by eliminating fine mesh requirements, (3) mitigates error accumulation in time dependent simulations, and (4) enables automatic adaptation to evolving physical phenomena.
arXiv Detail & Related papers (2025-04-15T16:54:04Z) - Learning Effective Dynamics across Spatio-Temporal Scales of Complex Flows [4.798951413107239]
We propose a novel framework, Graph-based Learning of Effective Dynamics (Graph-LED), that leverages graph neural networks (GNNs) and an attention-based autoregressive model.<n>We evaluate the proposed approach on a suite of fluid dynamics problems, including flow past a cylinder and flow over a backward-facing step over a range of Reynolds numbers.
arXiv Detail & Related papers (2025-02-11T22:14:30Z) - Graph Convolutional Networks for Simulating Multi-phase Flow and Transport in Porous Media [0.0]
Data-driven surrogate modeling provides inexpensive alternatives to high-fidelity numerical simulators.
CNNs are powerful in approximating partial differential equation solutions, but it remains challenging for CNNs to handle irregular and unstructured simulation meshes.
We construct surrogate models based on Graph Convolutional Networks (GCNs) to approximate the spatial-temporal solutions of multi-phase flow and transport processes in porous media.
arXiv Detail & Related papers (2023-07-10T09:59:35Z) - Temporal Subsampling Diminishes Small Spatial Scales in Recurrent Neural
Network Emulators of Geophysical Turbulence [0.0]
We investigate how an often overlooked processing step affects the quality of an emulator's predictions.
We implement ML architectures from a class of methods called reservoir computing: (1) a form of spatial Vector Autoregression (N VAR), and (2) an Echo State Network (ESN)
In all cases, subsampling the training data consistently leads to an increased bias at small scales that resembles numerical diffusion.
arXiv Detail & Related papers (2023-04-28T21:34:53Z) - Global-to-Local Modeling for Video-based 3D Human Pose and Shape
Estimation [53.04781510348416]
Video-based 3D human pose and shape estimations are evaluated by intra-frame accuracy and inter-frame smoothness.
We propose to structurally decouple the modeling of long-term and short-term correlations in an end-to-end framework, Global-to-Local Transformer (GLoT)
Our GLoT surpasses previous state-of-the-art methods with the lowest model parameters on popular benchmarks, i.e., 3DPW, MPI-INF-3DHP, and Human3.6M.
arXiv Detail & Related papers (2023-03-26T14:57:49Z) - Counterfactual Intervention Feature Transfer for Visible-Infrared Person
Re-identification [69.45543438974963]
We find graph-based methods in the visible-infrared person re-identification task (VI-ReID) suffer from bad generalization because of two issues.
The well-trained input features weaken the learning of graph topology, making it not generalized enough during the inference process.
We propose a Counterfactual Intervention Feature Transfer (CIFT) method to tackle these problems.
arXiv Detail & Related papers (2022-08-01T16:15:31Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
We develop a hybrid (graph) neural network that combines a traditional graph convolutional network with an embedded differentiable fluid dynamics simulator inside the network itself.
We show that we can both generalize well to new situations and benefit from the substantial speedup of neural network CFD predictions.
arXiv Detail & Related papers (2020-07-08T21:23:19Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.