論文の概要: TRUST: Test-time Resource Utilization for Superior Trustworthiness
- arxiv url: http://arxiv.org/abs/2506.06048v1
- Date: Fri, 06 Jun 2025 12:52:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-09 17:28:43.477033
- Title: TRUST: Test-time Resource Utilization for Superior Trustworthiness
- Title(参考訳): TRUST:テストタイムの資源利用による信頼性向上
- Authors: Haripriya Harikumar, Santu Rana,
- Abstract要約: このようなノイズの影響を考慮し,より信頼性の高い信頼度推定を行う新しいテスト時間最適化法を提案する。
このスコアは単調なサブセット選択関数を定義し、低いスコアを持つサンプルを除去すると、集団の精度は一貫して上昇する。
- 参考スコア(独自算出の注目度): 15.031121920821109
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Standard uncertainty estimation techniques, such as dropout, often struggle to clearly distinguish reliable predictions from unreliable ones. We attribute this limitation to noisy classifier weights, which, while not impairing overall class-level predictions, render finer-level statistics less informative. To address this, we propose a novel test-time optimization method that accounts for the impact of such noise to produce more reliable confidence estimates. This score defines a monotonic subset-selection function, where population accuracy consistently increases as samples with lower scores are removed, and it demonstrates superior performance in standard risk-based metrics such as AUSE and AURC. Additionally, our method effectively identifies discrepancies between training and test distributions, reliably differentiates in-distribution from out-of-distribution samples, and elucidates key differences between CNN and ViT classifiers across various vision datasets.
- Abstract(参考訳): ドロップアウトのような標準的な不確実性推定手法は、信頼性の低い予測と信頼性の低い予測を区別するのにしばしば苦労する。
この制限は、クラスレベルの全体の予測を損なわないが、より詳細な統計情報が少ない、うるさい分類器の重みによるものである。
そこで本研究では,このようなノイズの影響を考慮し,信頼性の高い信頼度推定を行う新しいテスト時間最適化手法を提案する。
このスコアは単調なサブセット選択関数を定義しており、低いスコアを持つサンプルを取り除き、AUSEやAURCのような標準リスクベースの指標で優れたパフォーマンスを示す。
さらに,本手法は,トレーニングとテスト分布の相違を効果的に識別し,分布外分布と分布内分布を確実に区別し,CNNとViTの分類器間の重要な違いを様々な視覚データセットで解明する。
関連論文リスト
- Generative Conformal Prediction with Vectorized Non-Conformity Scores [6.059745771017814]
コンフォーマル予測は、保証されたカバレッジでモデルに依存しない不確実性定量化を提供する。
ベクトル化された非整合性スコアを持つ生成共形予測フレームワークを提案する。
我々は密度ランクの不確かさ球を用いた適応不確かさ集合を構築する。
論文 参考訳(メタデータ) (2024-10-17T16:37:03Z) - Uncertainty-Calibrated Test-Time Model Adaptation without Forgetting [55.17761802332469]
テスト時間適応(TTA)は、与えられたモデルw.r.t.を任意のテストサンプルに適用することにより、トレーニングデータとテストデータの間の潜在的な分散シフトに取り組むことを目指している。
事前の手法は各テストサンプルに対してバックプロパゲーションを実行するため、多くのアプリケーションに対して許容できない最適化コストがかかる。
本稿では, 有効サンプル選択基準を策定し, 信頼性および非冗長なサンプルを同定する, 効率的なアンチフォッティングテスト時間適応法を提案する。
論文 参考訳(メタデータ) (2024-03-18T05:49:45Z) - Binary Classification with Confidence Difference [100.08818204756093]
本稿では,信頼性差分法 (ConfDiff) という,弱教師付き二項分類問題について考察する。
本稿では,この問題に対処するためのリスク一貫性のあるアプローチを提案し,推定誤差が最適収束率と一致することを示す。
また,整合性や収束率も証明されたオーバーフィッティング問題を緩和するためのリスク補正手法も導入する。
論文 参考訳(メタデータ) (2023-10-09T11:44:50Z) - Towards Open-Set Test-Time Adaptation Utilizing the Wisdom of Crowds in
Entropy Minimization [47.61333493671805]
テスト時間適応(TTA)メソッドは、未ラベルのターゲットドメインにソース事前学習モデルを適用するために、モデルの予測に依存する。
本稿では, 以下の重要な経験的発見から着想を得た, 単純かつ効果的なサンプル選択法を提案する。
論文 参考訳(メタデータ) (2023-08-14T01:24:18Z) - Calibrating Deep Neural Networks using Explicit Regularisation and
Dynamic Data Pruning [25.982037837953268]
ディープニューラルネットワーク(DNN)は誤った予測をしがちで、予測された出力と関連する信頼スコアのミスマッチを示すことが多い。
そこで本研究では,分類損失を伴う新たな正規化手法を提案する。
論文 参考訳(メタデータ) (2022-12-20T05:34:58Z) - Adaptive Dimension Reduction and Variational Inference for Transductive
Few-Shot Classification [2.922007656878633]
適応次元の削減によりさらに改善された変分ベイズ推定に基づく新しいクラスタリング法を提案する。
提案手法は,Few-Shotベンチマークにおける現実的非バランスなトランスダクティブ設定の精度を大幅に向上させる。
論文 参考訳(メタデータ) (2022-09-18T10:29:02Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Exploiting Sample Uncertainty for Domain Adaptive Person
Re-Identification [137.9939571408506]
各サンプルに割り当てられた擬似ラベルの信頼性を推定・活用し,ノイズラベルの影響を緩和する。
不確実性に基づく最適化は大幅な改善をもたらし、ベンチマークデータセットにおける最先端のパフォーマンスを達成します。
論文 参考訳(メタデータ) (2020-12-16T04:09:04Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
数ショットのメトリックベースのアプローチのための一般的なトランスダクティブ推論手法は、最も確実なクエリ例の平均で、各クラスのプロトタイプを更新することである。
本稿では,各クエリの信頼度をメタラーニングして,ラベルのないクエリに最適な重みを割り当てる手法を提案する。
4つのベンチマークデータセットに対してメタ学習の信頼度で、少数ショットの学習モデルを検証した。
論文 参考訳(メタデータ) (2020-02-27T10:22:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。