On-board Mission Replanning for Adaptive Cooperative Multi-Robot Systems
- URL: http://arxiv.org/abs/2506.06094v1
- Date: Fri, 06 Jun 2025 13:54:19 GMT
- Title: On-board Mission Replanning for Adaptive Cooperative Multi-Robot Systems
- Authors: Elim Kwan, Rehman Qureshi, Liam Fletcher, Colin Laganier, Victoria Nockles, Richard Walters,
- Abstract summary: Cooperative autonomous robotic systems have significant potential for executing complex multi-task missions.<n>They commonly operate in remote, dynamic and hazardous environments.<n>Fast, on-board replanning algorithms are therefore needed to enhance resilience.<n>This work paves the way for increased resilience in autonomous multi-agent systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cooperative autonomous robotic systems have significant potential for executing complex multi-task missions across space, air, ground, and maritime domains. But they commonly operate in remote, dynamic and hazardous environments, requiring rapid in-mission adaptation without reliance on fragile or slow communication links to centralised compute. Fast, on-board replanning algorithms are therefore needed to enhance resilience. Reinforcement Learning shows strong promise for efficiently solving mission planning tasks when formulated as Travelling Salesperson Problems (TSPs), but existing methods: 1) are unsuitable for replanning, where agents do not start at a single location; 2) do not allow cooperation between agents; 3) are unable to model tasks with variable durations; or 4) lack practical considerations for on-board deployment. Here we define the Cooperative Mission Replanning Problem as a novel variant of multiple TSP with adaptations to overcome these issues, and develop a new encoder/decoder-based model using Graph Attention Networks and Attention Models to solve it effectively and efficiently. Using a simple example of cooperative drones, we show our replanner consistently (90% of the time) maintains performance within 10% of the state-of-the-art LKH3 heuristic solver, whilst running 85-370 times faster on a Raspberry Pi. This work paves the way for increased resilience in autonomous multi-agent systems.
Related papers
- Multimodal Fused Learning for Solving the Generalized Traveling Salesman Problem in Robotic Task Planning [11.697279328699489]
We propose a Multimodal Fused Learning framework to solve the Generalized Traveling Salesman Problem (GTSP)<n>We first introduce a coordinate-based image builder that transforms GTSP instances into spatially informative representations.<n>We then design an adaptive resolution scaling strategy to enhance adaptability across different problem scales, and develop a multimodal fusion module.
arXiv Detail & Related papers (2025-06-20T11:51:52Z) - Graph Based Deep Reinforcement Learning Aided by Transformers for Multi-Agent Cooperation [2.8169258551959544]
We propose a novel framework that integrates Graph Neural Networks (GNNs), Deep Reinforcement Learning (DRL), and transformer-based mechanisms for enhanced multi-agent coordination and collective task execution.<n>Our approach leverages GNNs to model agent-agent and agent-goal interactions through adaptive graph construction, enabling efficient information aggregation and decision-making under constrained communication.
arXiv Detail & Related papers (2025-04-11T01:46:18Z) - REMAC: Self-Reflective and Self-Evolving Multi-Agent Collaboration for Long-Horizon Robot Manipulation [57.628771707989166]
We propose an adaptive multi-agent planning framework, termed REMAC, that enables efficient, scene-agnostic multi-robot long-horizon task planning and execution.<n>ReMAC incorporates two key modules: a self-reflection module performing pre-conditions and post-condition checks in the loop to evaluate progress and refine plans, and a self-evolvement module dynamically adapting plans based on scene-specific reasoning.
arXiv Detail & Related papers (2025-03-28T03:51:40Z) - MAGNNET: Multi-Agent Graph Neural Network-based Efficient Task Allocation for Autonomous Vehicles with Deep Reinforcement Learning [2.5022287664959446]
We introduce a novel framework that integrates graph neural networks (GNNs) with a centralized training and decentralized execution (CTDE) paradigm.<n>Our approach enables unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) to dynamically allocate tasks efficiently without necessitating central coordination.
arXiv Detail & Related papers (2025-02-04T13:29:56Z) - Cluster-Based Multi-Agent Task Scheduling for Space-Air-Ground Integrated Networks [60.085771314013044]
Low-altitude economy holds significant potential for development in areas such as communication and sensing.<n>We propose a Clustering-based Multi-agent Deep Deterministic Policy Gradient (CMADDPG) algorithm to address the multi-UAV cooperative task scheduling challenges in SAGIN.
arXiv Detail & Related papers (2024-12-14T06:17:33Z) - FusionLLM: A Decentralized LLM Training System on Geo-distributed GPUs with Adaptive Compression [55.992528247880685]
Decentralized training faces significant challenges regarding system design and efficiency.
We present FusionLLM, a decentralized training system designed and implemented for training large deep neural networks (DNNs)
We show that our system and method can achieve 1.45 - 9.39x speedup compared to baseline methods while ensuring convergence.
arXiv Detail & Related papers (2024-10-16T16:13:19Z) - Communication- and Computation-Efficient Distributed Submodular Optimization in Robot Mesh Networks [2.8936428431504164]
We provide a communication- and computation-efficient method for distributed submodular optimization in robot mesh networks.<n>Our method, Resource-Aware distributed Greedy (RAG), introduces a new distributed optimization paradigm.<n>RAG's decision-time scales linearly with the network size, while state-of-the-art near-optimal submodular optimization algorithms scale cubically.
arXiv Detail & Related papers (2024-07-15T01:25:39Z) - DC-MRTA: Decentralized Multi-Robot Task Allocation and Navigation in
Complex Environments [55.204450019073036]
We present a novel reinforcement learning based task allocation and decentralized navigation algorithm for mobile robots in warehouse environments.
We consider the problem of joint decentralized task allocation and navigation and present a two level approach to solve it.
We observe improvement up to 14% in terms of task completion time and up-to 40% improvement in terms of computing collision-free trajectories for the robots.
arXiv Detail & Related papers (2022-09-07T00:35:27Z) - Distributed Allocation and Scheduling of Tasks with Cross-Schedule
Dependencies for Heterogeneous Multi-Robot Teams [2.294915015129229]
We present a distributed task allocation and scheduling algorithm for missions where the tasks of different robots are tightly coupled with temporal and precedence constraints.
An application of the planning procedure to a practical use case of a greenhouse maintained by a multi-robot system is given.
arXiv Detail & Related papers (2021-09-07T13:44:28Z) - Multi-Agent Routing Value Iteration Network [88.38796921838203]
We propose a graph neural network based model that is able to perform multi-agent routing based on learned value in a sparsely connected graph.
We show that our model trained with only two agents on graphs with a maximum of 25 nodes can easily generalize to situations with more agents and/or nodes.
arXiv Detail & Related papers (2020-07-09T22:16:45Z) - Dynamic Multi-Robot Task Allocation under Uncertainty and Temporal
Constraints [52.58352707495122]
We present a multi-robot allocation algorithm that decouples the key computational challenges of sequential decision-making under uncertainty and multi-agent coordination.
We validate our results over a wide range of simulations on two distinct domains: multi-arm conveyor belt pick-and-place and multi-drone delivery dispatch in a city.
arXiv Detail & Related papers (2020-05-27T01:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.