SATversary: Adversarial Attacks on Satellite Fingerprinting
- URL: http://arxiv.org/abs/2506.06119v1
- Date: Fri, 06 Jun 2025 14:27:19 GMT
- Title: SATversary: Adversarial Attacks on Satellite Fingerprinting
- Authors: Joshua Smailes, Sebastian Köhler, Simon Birnbach, Martin Strohmeier, Ivan Martinovic,
- Abstract summary: transmitter fingerprinting provides mechanisms by which communication can be authenticated.<n>We show that an optimized jamming signal can cause a 50% error rate with attacker-to-victim ratios as low as -30dB.<n>We also present a data poisoning attack, enabling persistent message spoofing by altering the data used to authenticate incoming messages to include the attacker's transmitter.
- Score: 14.683336638975762
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As satellite systems become increasingly vulnerable to physical layer attacks via SDRs, novel countermeasures are being developed to protect critical systems, particularly those lacking cryptographic protection, or those which cannot be upgraded to support modern cryptography. Among these is transmitter fingerprinting, which provides mechanisms by which communication can be authenticated by looking at characteristics of the transmitter, expressed as impairments on the signal. Previous works show that fingerprinting can be used to classify satellite transmitters, or authenticate them against SDR-equipped attackers under simple replay scenarios. In this paper we build upon this by looking at attacks directly targeting the fingerprinting system, with an attacker optimizing for maximum impact in jamming, spoofing, and dataset poisoning attacks, and demonstrate these attacks on the SatIQ system designed to authenticate Iridium transmitters. We show that an optimized jamming signal can cause a 50% error rate with attacker-to-victim ratios as low as -30dB (far less power than traditional jamming) and demonstrate successful identity forgery during spoofing attacks, with an attacker successfully removing their own transmitter's fingerprint from messages. We also present a data poisoning attack, enabling persistent message spoofing by altering the data used to authenticate incoming messages to include the fingerprint of the attacker's transmitter. Finally, we show that our model trained to optimize spoofing attacks can also be used to detect spoofing and replay attacks, even when it has never seen the attacker's transmitter before. Furthermore, this technique works even when the training dataset includes only a single transmitter, enabling fingerprinting to be used to protect small constellations and even individual satellites, providing additional protection where it is needed the most.
Related papers
- Practical Spoofing Attacks on Galileo Open Service Navigation Message Authentication [22.4706805281638]
This paper examines the Galileo Open Service Navigation Message Authentication (OSNMA)<n>It discovers two critical vulnerabilities, namely artificially-manipulated time synchronization (ATS) and interruptible message authentication (IMA)
arXiv Detail & Related papers (2025-01-16T02:16:53Z) - Rethinking Targeted Adversarial Attacks For Neural Machine Translation [56.10484905098989]
This paper presents a new setting for NMT targeted adversarial attacks that could lead to reliable attacking results.
Under the new setting, it then proposes a Targeted Word Gradient adversarial Attack (TWGA) method to craft adversarial examples.
Experimental results demonstrate that our proposed setting could provide faithful attacking results for targeted adversarial attacks on NMT systems.
arXiv Detail & Related papers (2024-07-07T10:16:06Z) - Principles of Designing Robust Remote Face Anti-Spoofing Systems [60.05766968805833]
This paper sheds light on the vulnerabilities of state-of-the-art face anti-spoofing methods against digital attacks.
It presents a comprehensive taxonomy of common threats encountered in face anti-spoofing systems.
arXiv Detail & Related papers (2024-06-06T02:05:35Z) - Rethinking the Vulnerabilities of Face Recognition Systems:From a Practical Perspective [53.24281798458074]
Face Recognition Systems (FRS) have increasingly integrated into critical applications, including surveillance and user authentication.
Recent studies have revealed vulnerabilities in FRS to adversarial (e.g., adversarial patch attacks) and backdoor attacks (e.g., training data poisoning)
arXiv Detail & Related papers (2024-05-21T13:34:23Z) - Sticky Fingers: Resilience of Satellite Fingerprinting against Jamming Attacks [13.857226688708353]
We evaluate the effectiveness of radio fingerprinting techniques under interference and jamming attacks.
We conclude that it takes a similar amount of jamming power in order to disrupt the fingerprint as it does to jam the message contents itself.
arXiv Detail & Related papers (2024-02-07T17:28:09Z) - An Open Patch Generator based Fingerprint Presentation Attack Detection
using Generative Adversarial Network [3.5558308387389626]
Presentation Attack (PA) or spoofing is one of the threats caused by presenting a spoof of a genuine fingerprint to the sensor of Automatic Fingerprint Recognition Systems (AFRS)
This paper proposes a CNN based technique that uses a Generative Adversarial Network (GAN) to augment the dataset with spoof samples generated from the proposed Open Patch Generator (OPG)
An overall accuracy of 96.20%, 94.97%, and 92.90% has been achieved on the LivDet 2015, 2017, and 2019 databases, respectively under the LivDet protocol scenarios.
arXiv Detail & Related papers (2023-06-06T10:52:06Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
We design a poison-only backdoor attack in an untargeted manner, based on task characteristics.
We show that, once the backdoor is embedded into the target model by our attack, it can trick the model to lose detection of any object stamped with our trigger patterns.
arXiv Detail & Related papers (2022-11-02T17:05:45Z) - Early Detection of Network Attacks Using Deep Learning [0.0]
A network intrusion detection system (IDS) is a tool used for identifying unauthorized and malicious behavior by observing the network traffic.
We propose an end-to-end early intrusion detection system to prevent network attacks before they could cause any more damage to the system under attack.
arXiv Detail & Related papers (2022-01-27T16:35:37Z) - Stay Connected, Leave no Trace: Enhancing Security and Privacy in WiFi
via Obfuscating Radiometric Fingerprints [8.89054576694426]
The intrinsic hardware imperfection of WiFi chipsets manifests itself in the transmitted signal, leading to a unique radiometric fingerprint.
Recent works propose practical fingerprinting solutions that can be readily implemented in commercial-off-the-shelf devices.
We show analytically and experimentally that these solutions are highly vulnerable to impersonation attacks.
We propose RF-Veil, a radiometric fingerprinting solution that not only is robust against impersonation attacks but also protects user privacy.
arXiv Detail & Related papers (2020-11-25T11:10:59Z) - Backdoor Attack against Speaker Verification [86.43395230456339]
We show that it is possible to inject the hidden backdoor for infecting speaker verification models by poisoning the training data.
We also demonstrate that existing backdoor attacks cannot be directly adopted in attacking speaker verification.
arXiv Detail & Related papers (2020-10-22T11:10:08Z) - Defense for Black-box Attacks on Anti-spoofing Models by Self-Supervised
Learning [71.17774313301753]
We explore the robustness of self-supervised learned high-level representations by using them in the defense against adversarial attacks.
Experimental results on the ASVspoof 2019 dataset demonstrate that high-level representations extracted by Mockingjay can prevent the transferability of adversarial examples.
arXiv Detail & Related papers (2020-06-05T03:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.