carps: A Framework for Comparing N Hyperparameter Optimizers on M Benchmarks
- URL: http://arxiv.org/abs/2506.06143v1
- Date: Fri, 06 Jun 2025 15:01:39 GMT
- Title: carps: A Framework for Comparing N Hyperparameter Optimizers on M Benchmarks
- Authors: Carolin Benjamins, Helena Graf, Sarah Segel, Difan Deng, Tim Ruhkopf, Leona Hennig, Soham Basu, Neeratyoy Mallik, Edward Bergman, Deyao Chen, François Clément, Matthias Feurer, Katharina Eggensperger, Frank Hutter, Carola Doerr, Marius Lindauer,
- Abstract summary: carps is a benchmark framework for Comprehensive Automated Research Performance Studies.<n>We focus on the four most important types of HPO task types: blackbox, multi-objective, multi-fidelity-multi-objective.<n>With 3 336 tasks from 5 community benchmark collections and 28 variants of 9 families, we offer the biggest go-to library to date.
- Score: 39.19954390982095
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Hyperparameter Optimization (HPO) is crucial to develop well-performing machine learning models. In order to ease prototyping and benchmarking of HPO methods, we propose carps, a benchmark framework for Comprehensive Automated Research Performance Studies allowing to evaluate N optimizers on M benchmark tasks. In this first release of carps, we focus on the four most important types of HPO task types: blackbox, multi-fidelity, multi-objective and multi-fidelity-multi-objective. With 3 336 tasks from 5 community benchmark collections and 28 variants of 9 optimizer families, we offer the biggest go-to library to date to evaluate and compare HPO methods. The carps framework relies on a purpose-built, lightweight interface, gluing together optimizers and benchmark tasks. It also features an analysis pipeline, facilitating the evaluation of optimizers on benchmarks. However, navigating a huge number of tasks while developing and comparing methods can be computationally infeasible. To address this, we obtain a subset of representative tasks by minimizing the star discrepancy of the subset, in the space spanned by the full set. As a result, we propose an initial subset of 10 to 30 diverse tasks for each task type, and include functionality to re-compute subsets as more benchmarks become available, enabling efficient evaluations. We also establish a first set of baseline results on these tasks as a measure for future comparisons. With carps (https://www.github.com/automl/CARP-S), we make an important step in the standardization of HPO evaluation.
Related papers
- Visual Document Understanding and Question Answering: A Multi-Agent Collaboration Framework with Test-Time Scaling [83.78874399606379]
We propose MACT, a Multi-Agent Collaboration framework with Test-Time scaling.<n>It comprises four distinct small-scale agents, with clearly defined roles and effective collaboration.<n>It shows superior performance with a smaller parameter scale without sacrificing the ability of general and mathematical tasks.
arXiv Detail & Related papers (2025-08-05T12:52:09Z) - PanMatch: Unleashing the Potential of Large Vision Models for Unified Matching Models [80.65273820998875]
We present PanMatch, a versatile foundation model for robust correspondence matching.<n>Our key insight is that any two-frame correspondence matching task can be addressed within a 2D displacement estimation framework.<n>PanMatch achieves multi-task integration by endowing displacement estimation algorithms with unprecedented generalization capabilities.
arXiv Detail & Related papers (2025-07-11T08:18:52Z) - Purifying, Labeling, and Utilizing: A High-Quality Pipeline for Small Object Detection [83.90563802153707]
PLUSNet is a high-quality Small object detection framework.<n>It comprises three components: the Hierarchical Feature (HFP) framework for purifying upstream features, the Multiple Criteria Label Assignment (MCLA) for improving the quality of midstream training samples, and the Frequency Decoupled Head (FDHead) for more effectively exploiting information to accomplish downstream tasks.
arXiv Detail & Related papers (2025-04-29T10:11:03Z) - LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning [56.273799410256075]
The framework combines Monte Carlo Tree Search (MCTS) with iterative Self-Refine to optimize the reasoning path.
The framework has been tested on general and advanced benchmarks, showing superior performance in terms of search efficiency and problem-solving capability.
arXiv Detail & Related papers (2024-10-03T18:12:29Z) - BOtied: Multi-objective Bayesian optimization with tied multivariate ranks [33.414682601242006]
In this paper, we show a natural connection between non-dominated solutions and the extreme quantile of the joint cumulative distribution function.
Motivated by this link, we propose the Pareto-compliant CDF indicator and the associated acquisition function, BOtied.
Our experiments on a variety of synthetic and real-world problems demonstrate that BOtied outperforms state-of-the-art MOBO acquisition functions.
arXiv Detail & Related papers (2023-06-01T04:50:06Z) - Speeding Up Multi-Objective Hyperparameter Optimization by Task
Similarity-Based Meta-Learning for the Tree-Structured Parzen Estimator [37.553558410770314]
In this paper, we extend TPE's acquisition function to the meta-learning setting using a task similarity defined by the overlap of top domains between tasks.
In the experiments, we demonstrate that our method speeds up MO-TPE on tabular HPO benchmarks and attains state-of-the-art performance.
arXiv Detail & Related papers (2022-12-13T17:33:02Z) - Task Adaptive Parameter Sharing for Multi-Task Learning [114.80350786535952]
Adaptive Task Adapting Sharing (TAPS) is a method for tuning a base model to a new task by adaptively modifying a small, task-specific subset of layers.
Compared to other methods, TAPS retains high accuracy on downstream tasks while introducing few task-specific parameters.
We evaluate our method on a suite of fine-tuning tasks and architectures (ResNet, DenseNet, ViT) and show that it achieves state-of-the-art performance while being simple to implement.
arXiv Detail & Related papers (2022-03-30T23:16:07Z) - YAHPO Gym -- Design Criteria and a new Multifidelity Benchmark for
Hyperparameter Optimization [1.0718353079920009]
We present a new surrogate-based benchmark suite for multifidelity HPO methods consisting of 9 benchmark collections that constitute over 700 multifidelity HPO problems in total.
All our benchmarks also allow for querying of multiple optimization targets, enabling the benchmarking of multi-objective HPO.
arXiv Detail & Related papers (2021-09-08T14:16:31Z) - Hyperparameter Optimization: Foundations, Algorithms, Best Practices and
Open Challenges [5.139260825952818]
This paper reviews important HPO methods such as grid or random search, evolutionary algorithms, Bayesian optimization, Hyperband and racing.
It gives practical recommendations regarding important choices to be made when conducting HPO, including the HPO algorithms themselves, performance evaluation, how to combine HPO with ML pipelines, runtime improvements, and parallelization.
arXiv Detail & Related papers (2021-07-13T04:55:47Z) - HPO-B: A Large-Scale Reproducible Benchmark for Black-Box HPO based on
OpenML [5.735035463793008]
We present HPO-B, a large-scale benchmark for comparing HPO algorithms.
Our benchmark is assembled and preprocessed from the OpenML repository.
We detail explicit experimental protocols, splits, and evaluation measures for comparing methods for both non-transfer and transfer learning HPO.
arXiv Detail & Related papers (2021-06-11T09:18:39Z) - IOHanalyzer: Detailed Performance Analyses for Iterative Optimization
Heuristics [3.967483941966979]
IOHanalyzer is a new user-friendly tool for the analysis, comparison, and visualization of performance data of IOHs.
IOHanalyzer provides detailed statistics about fixed-target running times and about fixed-budget performance of the benchmarked algorithms.
IOHanalyzer can directly process performance data from the main benchmarking platforms.
arXiv Detail & Related papers (2020-07-08T08:20:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.