Joint-GCG: Unified Gradient-Based Poisoning Attacks on Retrieval-Augmented Generation Systems
- URL: http://arxiv.org/abs/2506.06151v1
- Date: Fri, 06 Jun 2025 15:12:06 GMT
- Title: Joint-GCG: Unified Gradient-Based Poisoning Attacks on Retrieval-Augmented Generation Systems
- Authors: Haowei Wang, Rupeng Zhang, Junjie Wang, Mingyang Li, Yuekai Huang, Dandan Wang, Qing Wang,
- Abstract summary: Retrieval-Augmented Generation (RAG) systems enhance Large Language Models (LLMs) by retrieving relevant documents from external corpora before generating responses.<n>Existing poisoning attack strategies treat the retrieval and generation stages as disjointed, limiting their effectiveness.<n>Joint-GCG is the first framework to unify gradient-based attacks across both retriever and generator models.
- Score: 11.300387488829035
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retrieval-Augmented Generation (RAG) systems enhance Large Language Models (LLMs) by retrieving relevant documents from external corpora before generating responses. This approach significantly expands LLM capabilities by leveraging vast, up-to-date external knowledge. However, this reliance on external knowledge makes RAG systems vulnerable to corpus poisoning attacks that manipulate generated outputs via poisoned document injection. Existing poisoning attack strategies typically treat the retrieval and generation stages as disjointed, limiting their effectiveness. We propose Joint-GCG, the first framework to unify gradient-based attacks across both retriever and generator models through three innovations: (1) Cross-Vocabulary Projection for aligning embedding spaces, (2) Gradient Tokenization Alignment for synchronizing token-level gradient signals, and (3) Adaptive Weighted Fusion for dynamically balancing attacking objectives. Evaluations demonstrate that Joint-GCG achieves at most 25% and an average of 5% higher attack success rate than previous methods across multiple retrievers and generators. While optimized under a white-box assumption, the generated poisons show unprecedented transferability to unseen models. Joint-GCG's innovative unification of gradient-based attacks across retrieval and generation stages fundamentally reshapes our understanding of vulnerabilities within RAG systems. Our code is available at https://github.com/NicerWang/Joint-GCG.
Related papers
- RGE-GS: Reward-Guided Expansive Driving Scene Reconstruction via Diffusion Priors [54.81109375939306]
RGE-GS is a novel expansive reconstruction framework that synergizes diffusion-based generation with reward-guided Gaussian integration.<n>We propose a reward network that learns to identify and prioritize consistently generated patterns prior to reconstruction phases.<n>During the reconstruction process, we devise a differentiated training strategy that automatically adjust Gaussian optimization progress according to scene converge metrics.
arXiv Detail & Related papers (2025-06-28T08:02:54Z) - The Silent Saboteur: Imperceptible Adversarial Attacks against Black-Box Retrieval-Augmented Generation Systems [101.68501850486179]
We explore adversarial attacks against retrieval-augmented generation (RAG) systems to identify their vulnerabilities.<n>This task aims to find imperceptible perturbations that retrieve a target document, originally excluded from the initial top-$k$ candidate set.<n>We propose ReGENT, a reinforcement learning-based framework that tracks interactions between the attacker and the target RAG.
arXiv Detail & Related papers (2025-05-24T08:19:25Z) - Benchmarking Poisoning Attacks against Retrieval-Augmented Generation [12.573766276297441]
Retrieval-Augmented Generation (RAG) has proven effective in mitigating hallucinations in large language models by incorporating external knowledge during inference.<n>We propose the first comprehensive benchmark framework for evaluating poisoning attacks on RAG.
arXiv Detail & Related papers (2025-05-24T06:17:59Z) - Chain-of-Thought Poisoning Attacks against R1-based Retrieval-Augmented Generation Systems [39.05753852489526]
Existing adversarial attack methods typically exploit knowledge base poisoning to probe the vulnerabilities of RAG systems.<n>This paper uses reasoning process templates from R1-based RAG systems to wrap erroneous knowledge into adversarial documents, and injects them into the knowledge base to attack RAG systems.<n>The key idea of our approach is that adversarial documents, by simulating the chain-of-thought patterns aligned with the model's training signals, may be misinterpreted by the model as authentic historical reasoning processes.
arXiv Detail & Related papers (2025-05-22T08:22:46Z) - Poisoned-MRAG: Knowledge Poisoning Attacks to Multimodal Retrieval Augmented Generation [71.32665836294103]
Multimodal retrieval-augmented generation (RAG) enhances the visual reasoning capability of vision-language models (VLMs)<n>In this work, we introduce textitPoisoned-MRAG, the first knowledge poisoning attack on multimodal RAG systems.
arXiv Detail & Related papers (2025-03-08T15:46:38Z) - TrustRAG: Enhancing Robustness and Trustworthiness in Retrieval-Augmented Generation [31.231916859341865]
TrustRAG is a framework that systematically filters malicious and irrelevant content before it is retrieved for generation.<n>TrustRAG delivers substantial improvements in retrieval accuracy, efficiency, and attack resistance.
arXiv Detail & Related papers (2025-01-01T15:57:34Z) - Enhancing Transferability of Adversarial Attacks with GE-AdvGAN+: A Comprehensive Framework for Gradient Editing [12.131163373757383]
Transferable adversarial attacks pose significant threats to deep neural networks.
We propose a novel framework for gradient editing-based transferable attacks, named GE-AdvGAN+.
Our framework integrates nearly all mainstream attack methods to enhance transferability while significantly reducing computational resource consumption.
arXiv Detail & Related papers (2024-08-22T18:26:31Z) - Corpus Poisoning via Approximate Greedy Gradient Descent [48.5847914481222]
We propose Approximate Greedy Gradient Descent, a new attack on dense retrieval systems based on the widely used HotFlip method for generating adversarial passages.
We show that our method achieves a high attack success rate on several datasets and using several retrievers, and can generalize to unseen queries and new domains.
arXiv Detail & Related papers (2024-06-07T17:02:35Z) - Advancing Generalized Transfer Attack with Initialization Derived Bilevel Optimization and Dynamic Sequence Truncation [49.480978190805125]
Transfer attacks generate significant interest for black-box applications.
Existing works essentially directly optimize the single-level objective w.r.t. surrogate model.
We propose a bilevel optimization paradigm, which explicitly reforms the nested relationship between the Upper-Level (UL) pseudo-victim attacker and the Lower-Level (LL) surrogate attacker.
arXiv Detail & Related papers (2024-06-04T07:45:27Z) - GE-AdvGAN: Improving the transferability of adversarial samples by
gradient editing-based adversarial generative model [69.71629949747884]
Adversarial generative models, such as Generative Adversarial Networks (GANs), are widely applied for generating various types of data.
In this work, we propose a novel algorithm named GE-AdvGAN to enhance the transferability of adversarial samples.
arXiv Detail & Related papers (2024-01-11T16:43:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.