Obfuscation-Resilient Binary Code Similarity Analysis using Dominance Enhanced Semantic Graph
- URL: http://arxiv.org/abs/2506.06161v1
- Date: Fri, 06 Jun 2025 15:26:53 GMT
- Title: Obfuscation-Resilient Binary Code Similarity Analysis using Dominance Enhanced Semantic Graph
- Authors: Yufeng Wang, Yuhong Feng, Yixuan Cao, Haoran Li, Haiyue Feng, Yifeng Wang,
- Abstract summary: ORCAS is an Obfuscation-Resilient BCSA model based on Dominance Enhanced Semantic Graph (DESG)<n>We develop ORCAS, an Obfuscation-Resilient BCSA model based on Dominance Enhanced Semantic Graph (DESG)
- Score: 11.549110908614873
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Binary code similarity analysis (BCSA) serves as a core technique for binary analysis tasks such as vulnerability detection. While current graph-based BCSA approaches capture substantial semantics and show strong performance, their performance suffers under code obfuscation due to the unstable control flow. To address this issue, we develop ORCAS, an Obfuscation-Resilient BCSA model based on Dominance Enhanced Semantic Graph (DESG). The DESG is an original binary code representation, capturing more binaries' implicit semantics without control flow structure, including inter-instruction relations, inter-basic block relations, and instruction-basic block relations. ORCAS robustly scores semantic similarity across binary functions from different obfuscation options, optimization levels, and instruction set architectures. Extensive evaluation on the BinKit dataset shows ORCAS significantly outperforms eight baselines, achieving an average 12.1% PR-AUC gain when using combined three obfuscation options compared to the state-of-the-art approaches. Furthermore, ORCAS improves recall by up to 43% on an original obfuscated real-world vulnerability dataset, which we released to facilitate future research.
Related papers
- Breaking Obfuscation: Cluster-Aware Graph with LLM-Aided Recovery for Malicious JavaScript Detection [9.83040332336481]
Malicious JavaScript code poses significant threats to user privacy, system integrity, and enterprise security.<n>We propose DeCoda, a hybrid defense framework that combines large language model (LLM)-based deobfuscation with code graph learning.
arXiv Detail & Related papers (2025-07-30T07:46:49Z) - Decompiling Smart Contracts with a Large Language Model [51.49197239479266]
Despite Etherscan's 78,047,845 smart contracts deployed on (as of May 26, 2025), a mere 767,520 ( 1%) are open source.<n>This opacity necessitates the automated semantic analysis of on-chain smart contract bytecode.<n>We introduce a pioneering decompilation pipeline that transforms bytecode into human-readable and semantically faithful Solidity code.
arXiv Detail & Related papers (2025-06-24T13:42:59Z) - Identifying Obfuscated Code through Graph-Based Semantic Analysis of Binary Code [5.181058136007981]
This paper investigates the problem of function-level obfuscation detection using graph-based approaches.<n>We consider various obfuscation types and obfuscators, resulting in two complex datasets.<n>Our approach shows satisfactory results, especially in a challenging 11-class classification task and in a practical malware analysis example.
arXiv Detail & Related papers (2025-04-02T08:36:27Z) - Beyond the Edge of Function: Unraveling the Patterns of Type Recovery in Binary Code [55.493408628371235]
We propose ByteTR, a framework for recovering variable types in binary code.<n>In light of the ubiquity of variable propagation across functions, ByteTR conducts inter-procedural analysis to trace variable propagation and employs a gated graph neural network to capture long-range data flow dependencies for variable type recovery.
arXiv Detail & Related papers (2025-03-10T12:27:05Z) - Binary Code Similarity Detection via Graph Contrastive Learning on Intermediate Representations [52.34030226129628]
Binary Code Similarity Detection (BCSD) plays a crucial role in numerous fields, including vulnerability detection, malware analysis, and code reuse identification.
In this paper, we propose IRBinDiff, which mitigates compilation differences by leveraging LLVM-IR with higher-level semantic abstraction.
Our extensive experiments, conducted under varied compilation settings, demonstrate that IRBinDiff outperforms other leading BCSD methods in both One-to-one comparison and One-to-many search scenarios.
arXiv Detail & Related papers (2024-10-24T09:09:20Z) - BinSimDB: Benchmark Dataset Construction for Fine-Grained Binary Code Similarity Analysis [6.093226756571566]
We construct a benchmark dataset for fine-grained binary code similarity analysis called BinSimDB.
Specifically, we propose BMerge and BPair algorithms to bridge the discrepancies between two binary code snippets.
The experimental results demonstrate that BinSimDB significantly improves the performance of binary code similarity comparison.
arXiv Detail & Related papers (2024-10-14T05:13:48Z) - FoC: Figure out the Cryptographic Functions in Stripped Binaries with LLMs [51.898805184427545]
We propose a novel framework called FoC to Figure out the Cryptographic functions in stripped binaries.<n>We first build a binary large language model (FoC-BinLLM) to summarize the semantics of cryptographic functions in natural language.<n>We then build a binary code similarity model (FoC-Sim) upon the FoC-BinLLM to create change-sensitive representations and use it to retrieve similar implementations of unknown cryptographic functions in a database.
arXiv Detail & Related papers (2024-03-27T09:45:33Z) - BinaryAI: Binary Software Composition Analysis via Intelligent Binary Source Code Matching [8.655595404611821]
We introduce BinaryAI, a novel binary-to-source SCA technique with two-phase binary source code matching to capture both syntactic and semantic code features.
Our experimental results demonstrate the superior performance of BinaryAI in terms of binary source code matching and the downstream SCA task.
arXiv Detail & Related papers (2024-01-20T07:57:57Z) - UniASM: Binary Code Similarity Detection without Fine-tuning [2.2329530239800035]
We propose a novel rich-semantic function representation technique to ensure the model captures the intricate nuances of binary code.<n>We introduce the first UniLM-based binary code embedding model, named UniASM, which includes two newly designed training tasks.<n>The experimental results show that UniASM outperforms the state-of-the-art (SOTA) approaches on the evaluation datasets.
arXiv Detail & Related papers (2022-10-28T14:04:57Z) - Software Vulnerability Detection via Deep Learning over Disaggregated
Code Graph Representation [57.92972327649165]
This work explores a deep learning approach to automatically learn the insecure patterns from code corpora.
Because code naturally admits graph structures with parsing, we develop a novel graph neural network (GNN) to exploit both the semantic context and structural regularity of a program.
arXiv Detail & Related papers (2021-09-07T21:24:36Z) - Pairwise Supervised Hashing with Bernoulli Variational Auto-Encoder and
Self-Control Gradient Estimator [62.26981903551382]
Variational auto-encoders (VAEs) with binary latent variables provide state-of-the-art performance in terms of precision for document retrieval.
We propose a pairwise loss function with discrete latent VAE to reward within-class similarity and between-class dissimilarity for supervised hashing.
This new semantic hashing framework achieves superior performance compared to the state-of-the-arts.
arXiv Detail & Related papers (2020-05-21T06:11:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.