UniASM: Binary Code Similarity Detection without Fine-tuning
- URL: http://arxiv.org/abs/2211.01144v4
- Date: Thu, 20 Feb 2025 02:49:49 GMT
- Title: UniASM: Binary Code Similarity Detection without Fine-tuning
- Authors: Yeming Gu, Hui Shu, Fei Kang, Fan Hu,
- Abstract summary: We propose a novel rich-semantic function representation technique to ensure the model captures the intricate nuances of binary code.<n>We introduce the first UniLM-based binary code embedding model, named UniASM, which includes two newly designed training tasks.<n>The experimental results show that UniASM outperforms the state-of-the-art (SOTA) approaches on the evaluation datasets.
- Score: 2.2329530239800035
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Binary code similarity detection (BCSD) is widely used in various binary analysis tasks such as vulnerability search, malware detection, clone detection, and patch analysis. Recent studies have shown that the learning-based binary code embedding models perform better than the traditional feature-based approaches. However, previous studies have not delved deeply into the key factors that affect model performance. In this paper, we design extensive ablation studies to explore these influencing factors. The experimental results have provided us with many new insights. We have made innovations in both code representation and model selection: we propose a novel rich-semantic function representation technique to ensure the model captures the intricate nuances of binary code, and we introduce the first UniLM-based binary code embedding model, named UniASM, which includes two newly designed training tasks to learn representations of binary functions. The experimental results show that UniASM outperforms the state-of-the-art (SOTA) approaches on the evaluation datasets. The average scores of Recall@1 on cross-compilers, cross-optimization-levels, and cross-obfuscations have improved by 12.7%, 8.5%, and 22.3%, respectively, compared to the best of the baseline methods. Besides, in the real-world task of known vulnerability search, UniASM outperforms all the current baselines.
Related papers
- Beyond the Edge of Function: Unraveling the Patterns of Type Recovery in Binary Code [55.493408628371235]
We propose ByteTR, a framework for recovering variable types in binary code.
In light of the ubiquity of variable propagation across functions, ByteTR conducts inter-procedural analysis to trace variable propagation and employs a gated graph neural network to capture long-range data flow dependencies for variable type recovery.
arXiv Detail & Related papers (2025-03-10T12:27:05Z) - A Progressive Transformer for Unifying Binary Code Embedding and Knowledge Transfer [15.689556592544667]
We introduce ProTST, a novel transformer-based methodology for binary code embedding.
ProTST employs a hierarchical training process based on a unique tree-like structure.
Results show that ProTST yields an average validation score (F1, MRR, and Recall@1) improvement of 14.8% compared to traditional two-stage training.
arXiv Detail & Related papers (2024-12-15T13:04:29Z) - USDRL: Unified Skeleton-Based Dense Representation Learning with Multi-Grained Feature Decorrelation [24.90512145836643]
We introduce a Unified Skeleton-based Dense Representation Learning framework based on feature decorrelation.
We show that our approach significantly outperforms the current state-of-the-art (SOTA) approaches.
arXiv Detail & Related papers (2024-12-12T12:20:27Z) - Binary Code Similarity Detection via Graph Contrastive Learning on Intermediate Representations [52.34030226129628]
Binary Code Similarity Detection (BCSD) plays a crucial role in numerous fields, including vulnerability detection, malware analysis, and code reuse identification.
In this paper, we propose IRBinDiff, which mitigates compilation differences by leveraging LLVM-IR with higher-level semantic abstraction.
Our extensive experiments, conducted under varied compilation settings, demonstrate that IRBinDiff outperforms other leading BCSD methods in both One-to-one comparison and One-to-many search scenarios.
arXiv Detail & Related papers (2024-10-24T09:09:20Z) - BinSimDB: Benchmark Dataset Construction for Fine-Grained Binary Code Similarity Analysis [6.093226756571566]
We construct a benchmark dataset for fine-grained binary code similarity analysis called BinSimDB.
Specifically, we propose BMerge and BPair algorithms to bridge the discrepancies between two binary code snippets.
The experimental results demonstrate that BinSimDB significantly improves the performance of binary code similarity comparison.
arXiv Detail & Related papers (2024-10-14T05:13:48Z) - Revisiting BPR: A Replicability Study of a Common Recommender System Baseline [78.00363373925758]
We study the features of the BPR model, indicating their impact on its performance, and investigate open-source BPR implementations.
Our analysis reveals inconsistencies between these implementations and the original BPR paper, leading to a significant decrease in performance of up to 50% for specific implementations.
We show that the BPR model can achieve performance levels close to state-of-the-art methods on the top-n recommendation tasks and even outperform them on specific datasets.
arXiv Detail & Related papers (2024-09-21T18:39:53Z) - Source Code Foundation Models are Transferable Binary Analysis Knowledge Bases [9.422025563792818]
Human-Oriented Binary Reverse Engineering aims to lift binary code to human-readable content relevant to source code.
We introduce a novel probe-and-recover framework that incorporates a binary-source encoder-decoder model and black-box LLMs for binary analysis.
arXiv Detail & Related papers (2024-05-30T00:17:44Z) - FoC: Figure out the Cryptographic Functions in Stripped Binaries with LLMs [54.27040631527217]
We propose a novel framework called FoC to Figure out the Cryptographic functions in stripped binaries.
We first build a binary large language model (FoC-BinLLM) to summarize the semantics of cryptographic functions in natural language.
We then build a binary code similarity model (FoC-Sim) upon the FoC-BinLLM to create change-sensitive representations and use it to retrieve similar implementations of unknown cryptographic functions in a database.
arXiv Detail & Related papers (2024-03-27T09:45:33Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
We introduce an experimental protocol that enables model comparisons based on equivalent compute, measured in accelerator hours.
We pre-process an existing large, diverse, and high-quality dataset of books that surpasses existing academic benchmarks in quality, diversity, and document length.
This work also provides two baseline models: a feed-forward model derived from the GPT-2 architecture and a recurrent model in the form of a novel LSTM with ten-fold throughput.
arXiv Detail & Related papers (2023-09-20T10:31:17Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Network Binarization via Contrastive Learning [16.274341164897827]
We establish a novel contrastive learning framework while training Binary Neural Networks (BNNs)
MI is introduced as the metric to measure the information shared between binary and FP activations.
Results show that our method can be implemented as a pile-up module on existing state-of-the-art binarization methods.
arXiv Detail & Related papers (2022-07-06T21:04:53Z) - Learning Similarity Preserving Binary Codes for Recommender Systems [5.799838997511804]
We study an unexplored module combination for the hashing-based recommender systems, namely Compact Cross-Similarity Recommender (CCSR)
Inspired by cross-modal retrieval, CCSR utilizes a Posteriori similarity instead of matrix factorization and rating reconstruction to model interactions between users and items.
On the MovieLens1M dataset, the absolute performance improvements are up to 15.69% in NDCG and 4.29% in Recall.
arXiv Detail & Related papers (2022-04-18T21:33:59Z) - Semantic-aware Binary Code Representation with BERT [27.908093567605484]
A wide range of binary analysis applications, such as bug discovery, malware analysis and code clone detection, require recovery of contextual meanings on a binary code.
Recently, binary analysis techniques based on machine learning have been proposed to automatically reconstruct the code representation of a binary.
In this paper, we propose DeepSemantic utilizing BERT in producing the semantic-aware code representation of a binary code.
arXiv Detail & Related papers (2021-06-10T03:31:29Z) - BCFNet: A Balanced Collaborative Filtering Network with Attention
Mechanism [106.43103176833371]
Collaborative Filtering (CF) based recommendation methods have been widely studied.
We propose a novel recommendation model named Balanced Collaborative Filtering Network (BCFNet)
In addition, an attention mechanism is designed to better capture the hidden information within implicit feedback and strengthen the learning ability of the neural network.
arXiv Detail & Related papers (2021-03-10T14:59:23Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z) - Understanding Self-supervised Learning with Dual Deep Networks [74.92916579635336]
We propose a novel framework to understand contrastive self-supervised learning (SSL) methods that employ dual pairs of deep ReLU networks.
We prove that in each SGD update of SimCLR with various loss functions, the weights at each layer are updated by a emphcovariance operator.
To further study what role the covariance operator plays and which features are learned in such a process, we model data generation and augmentation processes through a emphhierarchical latent tree model (HLTM)
arXiv Detail & Related papers (2020-10-01T17:51:49Z) - Pairwise Supervised Hashing with Bernoulli Variational Auto-Encoder and
Self-Control Gradient Estimator [62.26981903551382]
Variational auto-encoders (VAEs) with binary latent variables provide state-of-the-art performance in terms of precision for document retrieval.
We propose a pairwise loss function with discrete latent VAE to reward within-class similarity and between-class dissimilarity for supervised hashing.
This new semantic hashing framework achieves superior performance compared to the state-of-the-arts.
arXiv Detail & Related papers (2020-05-21T06:11:33Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.