Large Physics Models: Towards a collaborative approach with Large Language Models and Foundation Models
- URL: http://arxiv.org/abs/2501.05382v1
- Date: Thu, 09 Jan 2025 17:11:22 GMT
- Title: Large Physics Models: Towards a collaborative approach with Large Language Models and Foundation Models
- Authors: Kristian G. Barman, Sascha Caron, Emily Sullivan, Henk W. de Regt, Roberto Ruiz de Austri, Mieke Boon, Michael Färber, Stefan Fröse, Faegheh Hasibi, Andreas Ipp, Rukshak Kapoor, Gregor Kasieczka, Daniel Kostić, Michael Krämer, Tobias Golling, Luis G. Lopez, Jesus Marco, Sydney Otten, Pawel Pawlowski, Pietro Vischia, Erik Weber, Christoph Weniger,
- Abstract summary: This paper explores ideas and provides a potential roadmap for the development and evaluation of physics-specific large-scale AI models.
These models, based on foundation models such as Large Language Models (LLMs) are tailored to address the demands of physics research.
- Score: 8.320153035338418
- License:
- Abstract: This paper explores ideas and provides a potential roadmap for the development and evaluation of physics-specific large-scale AI models, which we call Large Physics Models (LPMs). These models, based on foundation models such as Large Language Models (LLMs) - trained on broad data - are tailored to address the demands of physics research. LPMs can function independently or as part of an integrated framework. This framework can incorporate specialized tools, including symbolic reasoning modules for mathematical manipulations, frameworks to analyse specific experimental and simulated data, and mechanisms for synthesizing theories and scientific literature. We begin by examining whether the physics community should actively develop and refine dedicated models, rather than relying solely on commercial LLMs. We then outline how LPMs can be realized through interdisciplinary collaboration among experts in physics, computer science, and philosophy of science. To integrate these models effectively, we identify three key pillars: Development, Evaluation, and Philosophical Reflection. Development focuses on constructing models capable of processing physics texts, mathematical formulations, and diverse physical data. Evaluation assesses accuracy and reliability by testing and benchmarking. Finally, Philosophical Reflection encompasses the analysis of broader implications of LLMs in physics, including their potential to generate new scientific understanding and what novel collaboration dynamics might arise in research. Inspired by the organizational structure of experimental collaborations in particle physics, we propose a similarly interdisciplinary and collaborative approach to building and refining Large Physics Models. This roadmap provides specific objectives, defines pathways to achieve them, and identifies challenges that must be addressed to realise physics-specific large scale AI models.
Related papers
- MAPS: Advancing Multi-Modal Reasoning in Expert-Level Physical Science [62.96434290874878]
Current Multi-Modal Large Language Models (MLLM) have shown strong capabilities in general visual reasoning tasks.
We develop a new framework, named Multi-Modal Scientific Reasoning with Physics Perception and Simulation (MAPS) based on an MLLM.
MAPS decomposes expert-level multi-modal reasoning task into physical diagram understanding via a Physical Perception Model (PPM) and reasoning with physical knowledge via a simulator.
arXiv Detail & Related papers (2025-01-18T13:54:00Z) - LLMPhy: Complex Physical Reasoning Using Large Language Models and World Models [35.01842161084472]
We propose a new physical reasoning task and a dataset, dubbed TraySim.
Our task involves predicting the dynamics of several objects on a tray that is given an external impact.
We present LLMPhy, a zero-shot black-box optimization framework that leverages the physics knowledge and program synthesis abilities of LLMs.
Our results show that the combination of the LLM and the physics engine leads to state-of-the-art zero-shot physical reasoning performance.
arXiv Detail & Related papers (2024-11-12T18:56:58Z) - A Phenomenological AI Foundation Model for Physical Signals [1.204553980682492]
We develop and train a model on 0.59 billion samples of cross-modal sensor measurements.
No prior knowledge of physical laws or inductive biases were introduced into the model.
We demonstrate that a single foundation model could effectively encode and predict physical behaviors.
arXiv Detail & Related papers (2024-10-15T21:03:53Z) - Towards World Simulator: Crafting Physical Commonsense-Based Benchmark for Video Generation [51.750634349748736]
Text-to-video (T2V) models have made significant strides in visualizing complex prompts.
However, the capacity of these models to accurately represent intuitive physics remains largely unexplored.
We introduce PhyGenBench to evaluate physical commonsense correctness in T2V generation.
arXiv Detail & Related papers (2024-10-07T17:56:04Z) - LLM and Simulation as Bilevel Optimizers: A New Paradigm to Advance Physical Scientific Discovery [141.39722070734737]
We propose to enhance the knowledge-driven, abstract reasoning abilities of Large Language Models with the computational strength of simulations.
We introduce Scientific Generative Agent (SGA), a bilevel optimization framework.
We conduct experiments to demonstrate our framework's efficacy in law discovery and molecular design.
arXiv Detail & Related papers (2024-05-16T03:04:10Z) - ContPhy: Continuum Physical Concept Learning and Reasoning from Videos [86.63174804149216]
ContPhy is a novel benchmark for assessing machine physical commonsense.
We evaluated a range of AI models and found that they still struggle to achieve satisfactory performance on ContPhy.
We also introduce an oracle model (ContPRO) that marries the particle-based physical dynamic models with the recent large language models.
arXiv Detail & Related papers (2024-02-09T01:09:21Z) - MeLM, a generative pretrained language modeling framework that solves
forward and inverse mechanics problems [0.0]
We report a flexible multi-modal mechanics language model, MeLM, applied to solve various nonlinear forward and inverse problems.
The framework is applied to various examples including bio-inspired hierarchical honeycomb design and carbon nanotube mechanics.
arXiv Detail & Related papers (2023-06-30T10:28:20Z) - Physics-Informed Machine Learning for Modeling and Control of Dynamical
Systems [0.0]
Physics-informed machine learning (PIML) is a set of methods and tools that systematically integrate machine learning (ML) algorithms with physical constraints.
The basic premise of PIML is that the integration of ML and physics can yield more effective, physically consistent, and data-efficient models.
This paper aims to provide a tutorial-like overview of the recent advances in PIML for dynamical system modeling and control.
arXiv Detail & Related papers (2023-06-24T05:24:48Z) - Symmetry Group Equivariant Architectures for Physics [52.784926970374556]
In the domain of machine learning, an awareness of symmetries has driven impressive performance breakthroughs.
We argue that both the physics community and the broader machine learning community have much to understand.
arXiv Detail & Related papers (2022-03-11T18:27:04Z) - Physics-Guided Deep Learning for Dynamical Systems: A survey [5.733401663293044]
Traditional physics-based models are interpretable but rely on rigid assumptions.
Deep learning provides novel alternatives for efficiently recognizing complex patterns and emulating nonlinear dynamics.
It aims to take the best from both physics-based modeling and state-of-the-art DL models to better solve scientific problems.
arXiv Detail & Related papers (2021-07-02T20:59:03Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.