"We need to avail ourselves of GenAI to enhance knowledge distribution": Empowering Older Adults through GenAI Literacy
- URL: http://arxiv.org/abs/2506.06225v1
- Date: Fri, 06 Jun 2025 16:38:37 GMT
- Title: "We need to avail ourselves of GenAI to enhance knowledge distribution": Empowering Older Adults through GenAI Literacy
- Authors: Eunhye Grace Ko, Shaini Nanayakkara, Earl W. Huff Jr,
- Abstract summary: Older adults often exhibit greater reservations about adopting emerging technologies.<n>This study examines strategies for delivering GenAI literacy to older adults.<n> Quantitative data indicated a trend toward improved AI literacy, though the results were not statistically significant.
- Score: 0.49157446832511503
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As generative AI (GenAI) becomes increasingly widespread, it is crucial to equip users, particularly vulnerable populations such as older adults (65 and older), with the knowledge to understand its benefits and potential risks. Older adults often exhibit greater reservations about adopting emerging technologies and require tailored literacy support. Using a mixed methods approach, this study examines strategies for delivering GenAI literacy to older adults through a chatbot named Litti, evaluating its impact on their AI literacy (knowledge, safety, and ethical use). The quantitative data indicated a trend toward improved AI literacy, though the results were not statistically significant. However, qualitative interviews revealed diverse levels of familiarity with generative AI and a strong desire to learn more. Findings also show that while Litti provided a positive learning experience, it did not significantly enhance participants' trust or sense of safety regarding GenAI. This exploratory case study highlights the challenges and opportunities in designing AI literacy education for the rapidly growing older adult population.
Related papers
- The GenAI Generation: Student Views of Awareness, Preparedness, and Concern [1.5709900716890133]
Outpacing the development of uniform policies and structures, GenAI has heralded a unique era and given rise to the GenAI Generation.<n>This study examines students' perceptions of GenAI through a concise survey with optional open-ended questions.<n>Students with greater curricular exposure to GenAI tend to feel more prepared, while those without it more often express vulnerability and uncertainty.
arXiv Detail & Related papers (2025-05-04T19:37:13Z) - Information Retrieval in the Age of Generative AI: The RGB Model [77.96475639967431]
This paper presents a novel quantitative approach to shed light on the complex information dynamics arising from the growing use of generative AI tools.<n>We propose a model to characterize the generation, indexing, and dissemination of information in response to new topics.<n>Our findings suggest that the rapid pace of generative AI adoption, combined with increasing user reliance, can outpace human verification, escalating the risk of inaccurate information proliferation.
arXiv Detail & Related papers (2025-04-29T10:21:40Z) - Generative AI in Education: Student Skills and Lecturer Roles [0.0]
This study aims to identify and evaluate the key competencies students need to effectively engage with GenAI in education.<n>The literature review identified 14 essential student skills for GenAI engagement, with AI literacy, critical thinking, and ethical AI practices emerging as the most critical.<n>In our study of lecturer strategies, we identified six key areas, with GenAI Integration and Curriculum Design being the most emphasised.
arXiv Detail & Related papers (2025-04-28T10:58:30Z) - Synergizing Self-Regulation and Artificial-Intelligence Literacy Towards Future Human-AI Integrative Learning [92.34299949916134]
Self-regulated learning (SRL) and Artificial-Intelligence (AI) literacy are becoming key competencies for successful human-AI interactive learning.<n>This study analyzed data from 1,704 Chinese undergraduates using clustering methods to uncover four learner groups.
arXiv Detail & Related papers (2025-03-31T13:41:21Z) - Engineering Educators' Perspectives on the Impact of Generative AI in Higher Education [4.06279597585806]
This study reports findings from a survey of engineering educators on their use of and perspectives toward generative AI.<n>We asked them about their use of and comfort with GenAI, their overall perspectives on GenAI, the challenges and potential harms of using it for teaching, learning, and research, and examined whether their approach to using and integrating GenAI in their classroom influenced their experiences with GenAI and perceptions of it.
arXiv Detail & Related papers (2025-02-01T21:29:53Z) - SoK: Watermarking for AI-Generated Content [112.9218881276487]
Watermarking schemes embed hidden signals within AI-generated content to enable reliable detection.<n>Watermarks can play a crucial role in enhancing AI safety and trustworthiness by combating misinformation and deception.<n>This work aims to guide researchers in advancing watermarking methods and applications, and support policymakers in addressing the broader implications of GenAI.
arXiv Detail & Related papers (2024-11-27T16:22:33Z) - Measuring Human Contribution in AI-Assisted Content Generation [66.06040950325969]
This study raises the research question of measuring human contribution in AI-assisted content generation.<n>By calculating mutual information between human input and AI-assisted output relative to self-information of AI-assisted output, we quantify the proportional information contribution of humans in content generation.
arXiv Detail & Related papers (2024-08-27T05:56:04Z) - Innovating Computer Programming Pedagogy: The AI-Lab Framework for
Generative AI Adoption [0.0]
We introduce "AI-Lab," a framework for guiding students in effectively leveraging GenAI within core programming courses.
By identifying and rectifying GenAI's errors, students enrich their learning process.
For educators, AI-Lab provides mechanisms to explore students' perceptions of GenAI's role in their learning experience.
arXiv Detail & Related papers (2023-08-23T17:20:37Z) - The AI generation gap: Are Gen Z students more interested in adopting
generative AI such as ChatGPT in teaching and learning than their Gen X and
Millennial Generation teachers? [0.0]
Gen Z students were generally optimistic about the potential benefits of generative AI (GenAI)
Gen X and Gen Y teachers expressed heightened concerns about overreliance, ethical and pedagogical implications.
arXiv Detail & Related papers (2023-05-04T14:42:06Z) - A Comprehensive Survey of AI-Generated Content (AIGC): A History of
Generative AI from GAN to ChatGPT [63.58711128819828]
ChatGPT and other Generative AI (GAI) techniques belong to the category of Artificial Intelligence Generated Content (AIGC)
The goal of AIGC is to make the content creation process more efficient and accessible, allowing for the production of high-quality content at a faster pace.
arXiv Detail & Related papers (2023-03-07T20:36:13Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.