論文の概要: How Malicious AI Swarms Can Threaten Democracy
- arxiv url: http://arxiv.org/abs/2506.06299v2
- Date: Tue, 10 Jun 2025 08:42:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-11 15:11:40.162412
- Title: How Malicious AI Swarms Can Threaten Democracy
- Title(参考訳): 悪質なAI集団が民主主義を脅かす理由
- Authors: Daniel Thilo Schroeder, Meeyoung Cha, Andrea Baronchelli, Nick Bostrom, Nicholas A. Christakis, David Garcia, Amit Goldenberg, Yara Kyrychenko, Kevin Leyton-Brown, Nina Lutz, Gary Marcus, Filippo Menczer, Gordon Pennycook, David G. Rand, Frank Schweitzer, Christopher Summerfield, Audrey Tang, Jay Van Bavel, Sander van der Linden, Dawn Song, Jonas R. Kunst,
- Abstract要約: 悪意のあるAIスワムは秘密裏に調整し、コミュニティに侵入し、従来の検出器を避け、連続したA/Bテストを実行することができる。
その結果は、造草された草の根の合意、断片化された共有現実、大量ハラスメント、投票者によるマイクロプレッシャーや動員などが含まれる。
常にオンになっているSwarm検出ダッシュボード、選択前の高忠実なSwarmシミュレーションストレステスト、透明性監査、オプションのクライアントサイド"AIシールド"である。
- 参考スコア(独自算出の注目度): 42.60750455396757
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advances in AI portend a new era of sophisticated disinformation operations. While individual AI systems already create convincing -- and at times misleading -- information, an imminent development is the emergence of malicious AI swarms. These systems can coordinate covertly, infiltrate communities, evade traditional detectors, and run continuous A/B tests, with round-the-clock persistence. The result can include fabricated grassroots consensus, fragmented shared reality, mass harassment, voter micro-suppression or mobilization, contamination of AI training data, and erosion of institutional trust. With democratic processes worldwide increasingly vulnerable, we urge a three-pronged response: (1) platform-side defenses -- always-on swarm-detection dashboards, pre-election high-fidelity swarm-simulation stress-tests, transparency audits, and optional client-side "AI shields" for users; (2) model-side safeguards -- standardized persuasion-risk tests, provenance-authenticating passkeys, and watermarking; and (3) system-level oversight -- a UN-backed AI Influence Observatory.
- Abstract(参考訳): AIの進歩は、高度な偽情報処理の新しい時代を後押しする。
個々のAIシステムがすでに説得力のある -- 時には誤解を招く -- 情報を生成する一方で、差し迫った発展は悪意のあるAIスワムの出現である。
これらのシステムは、秘密に調整し、コミュニティに侵入し、従来の検出器を避け、連続的なA/Bテストを実行し、ラウンド・ザ・タイムの持続性を持つ。
その結果は、造草された草の根合意、断片化された共有現実、マスハラスメント、投票者によるマイクロプレッシャーまたは動員、AIトレーニングデータの汚染、機関信頼の侵食などが含まれる。
1)プラットフォーム側の防衛 -- 常時オンのスワム検出ダッシュボード、選択済みの高忠実なスワムシミュレーションストレステスト、透明性監査、およびオプションのクライアント側のAIシールド — ユーザのためのモデル側のセーフガード -- 標準化された説得リスクテスト、証明されたパスキー、透かし、システムレベルの監視 -- 国連支援のAI影響観測所 — である。
関連論文リスト
- Preventing Adversarial AI Attacks Against Autonomous Situational Awareness: A Maritime Case Study [0.0]
アドリラル人工知能(AI)による攻撃は、自律走行に重大な脅威をもたらす。
本稿では、敵対的AIに関連する3つの重要な研究課題に対処する。
本稿では,複数入力とデータ融合を利用して防御部品を構築できるビルディングディフェンスを提案する。
論文 参考訳(メタデータ) (2025-05-27T17:59:05Z) - Transforming Cyber Defense: Harnessing Agentic and Frontier AI for Proactive, Ethical Threat Intelligence [0.0]
この原稿は、エージェントAIとフロンティアAIの収束がサイバーセキュリティをいかに変えているかを説明する。
本稿では,リアルタイムモニタリング,自動インシデント応答,永続的学習といった,レジリエントでダイナミックな防衛エコシステム構築における役割について検討する。
我々のビジョンは、テクノロジーのイノベーションを、倫理的監視を揺るがさずに調和させることであり、未来のAIによるセキュリティソリューションが、新たなサイバー脅威を効果的に対処しつつ、公正性、透明性、説明責任の核心的価値を維持することを保証することである。
論文 参考訳(メタデータ) (2025-02-28T20:23:35Z) - Guardians of the Agentic System: Preventing Many Shots Jailbreak with Agentic System [0.8136541584281987]
本研究は,3つの検査手法を用いて,逆チューリングテストによりローグエージェントを検出し,マルチエージェントシミュレーションにより知覚的アライメントを解析する。
GEMINI 1.5 Pro と llama-3.3-70B, Deepseek r1 モデルを用いて, 抗ジェイルブレイクシステムを開発した。
GEMINI 1.5 Proの94%の精度など、検出能力は強いが、長時間の攻撃を受けた場合、システムは永続的な脆弱性に悩まされる。
論文 参考訳(メタデータ) (2025-02-23T23:35:15Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - TeD-SPAD: Temporal Distinctiveness for Self-supervised
Privacy-preservation for video Anomaly Detection [59.04634695294402]
人間の監視のないビデオ異常検出(VAD)は複雑なコンピュータビジョンタスクである。
VADのプライバシー漏洩により、モデルは人々の個人情報に関連する不必要なバイアスを拾い上げ、増幅することができる。
本稿では,視覚的プライベート情報を自己管理的に破壊する,プライバシーに配慮したビデオ異常検出フレームワークTeD-SPADを提案する。
論文 参考訳(メタデータ) (2023-08-21T22:42:55Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
我々は、攻撃者が汎用人工知能システムにおける決定を制御できる新しい敵の摂動について研究する。
敵対的なデータ修正とは対照的に、ここで考慮する攻撃メカニズムには、AIシステム自体の変更が含まれる。
論文 参考訳(メタデータ) (2021-06-26T10:50:07Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
人工知能(AI)の最近の進歩は、サイバーセキュリティのための行動分析(UEBA)に新たな能力をもたらした。
本稿では、検出プロセスを改善し、人間の専門知識を効果的に活用することにより、この攻撃を効果的に軽減するソリューションを提案する。
論文 参考訳(メタデータ) (2020-01-13T13:54:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。