論文の概要: Transforming Cyber Defense: Harnessing Agentic and Frontier AI for Proactive, Ethical Threat Intelligence
- arxiv url: http://arxiv.org/abs/2503.00164v1
- Date: Fri, 28 Feb 2025 20:23:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:12:53.098491
- Title: Transforming Cyber Defense: Harnessing Agentic and Frontier AI for Proactive, Ethical Threat Intelligence
- Title(参考訳): サイバー防衛を変革する - 積極的で倫理的な知性のためのエージェントとフロンティアAI
- Authors: Krti Tallam,
- Abstract要約: この原稿は、エージェントAIとフロンティアAIの収束がサイバーセキュリティをいかに変えているかを説明する。
本稿では,リアルタイムモニタリング,自動インシデント応答,永続的学習といった,レジリエントでダイナミックな防衛エコシステム構築における役割について検討する。
我々のビジョンは、テクノロジーのイノベーションを、倫理的監視を揺るがさずに調和させることであり、未来のAIによるセキュリティソリューションが、新たなサイバー脅威を効果的に対処しつつ、公正性、透明性、説明責任の核心的価値を維持することを保証することである。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In an era marked by unprecedented digital complexity, the cybersecurity landscape is evolving at a breakneck pace, challenging traditional defense paradigms. Advanced Persistent Threats (APTs) reveal inherent vulnerabilities in conventional security measures and underscore the urgent need for continuous, adaptive, and proactive strategies that seamlessly integrate human insight with cutting edge AI technologies. This manuscript explores how the convergence of agentic AI and Frontier AI is transforming cybersecurity by reimagining frameworks such as the cyber kill chain, enhancing threat intelligence processes, and embedding robust ethical governance within automated response systems. Drawing on real-world data and forward looking perspectives, we examine the roles of real time monitoring, automated incident response, and perpetual learning in forging a resilient, dynamic defense ecosystem. Our vision is to harmonize technological innovation with unwavering ethical oversight, ensuring that future AI driven security solutions uphold core human values of fairness, transparency, and accountability while effectively countering emerging cyber threats.
- Abstract(参考訳): 前例のないデジタル複雑性に特徴付けられる時代には、サイバーセキュリティの展望は破滅的なペースで進化し、従来の防衛パラダイムに挑戦している。
Advanced Persistent Threats (APTs)は、従来のセキュリティ対策に固有の脆弱性を明らかにし、最先端のAI技術と人間の洞察をシームレスに統合する、継続的、適応的、そして積極的な戦略の緊急性の必要性を強調している。
エージェントAIとフロンティアAIの収束は、サイバーキラーチェーンのようなフレームワークを再想像し、脅威情報プロセスを強化し、自動化された応答システムに堅牢な倫理的ガバナンスを組み込むことによって、サイバーセキュリティを変革している。
実世界のデータと前方視界に基づいて、リアルタイム監視、自動インシデント応答、永続的な学習といった、レジリエントでダイナミックな防衛エコシステム構築における役割について検討する。
我々のビジョンは、テクノロジーのイノベーションを、倫理的監視を揺るがさずに調和させることであり、未来のAIによるセキュリティソリューションが、新たなサイバー脅威を効果的に対処しつつ、公正性、透明性、説明責任の核心的価値を維持することを保証することである。
関連論文リスト
- Cyber Shadows: Neutralizing Security Threats with AI and Targeted Policy Measures [0.0]
サイバー脅威は個人、組織、社会レベルでリスクを引き起こす。
本稿では,AI駆動型ソリューションと政策介入を統合した包括的サイバーセキュリティ戦略を提案する。
論文 参考訳(メタデータ) (2025-01-03T09:26:50Z) - The MESA Security Model 2.0: A Dynamic Framework for Mitigating Stealth Data Exfiltration [0.0]
ステルスデータ流出は、隠蔽侵入、拡張された検出不能、機密データの不正な拡散を特徴とする重要なサイバー脅威である。
以上の結果から,従来の防衛戦略はこれらの高度な脅威に対処するには不十分であることが判明した。
この複雑な風景をナビゲートする上で、潜在的な脅威を予測し、防衛を継続的に更新することが重要です。
論文 参考訳(メタデータ) (2024-05-17T16:14:45Z) - Artificial Intelligence as the New Hacker: Developing Agents for Offensive Security [0.0]
本稿では,人工知能(AI)の攻撃的サイバーセキュリティへの統合について検討する。
サイバー攻撃をシミュレートし実行するために設計された、自律的なAIエージェントであるReaperAIを開発している。
ReaperAIは、セキュリティ脆弱性を自律的に識別し、悪用し、分析する可能性を実証する。
論文 参考訳(メタデータ) (2024-05-09T18:15:12Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence(GAI)は、AIイノベーションの最前線に立ち、多様なコンテンツを生成するための急速な進歩と非並行的な能力を示す。
本稿では,通信ネットワークの物理層におけるセキュリティ向上におけるGAIの様々な応用について,広範な調査を行う。
私たちは、物理的レイヤセキュリティの課題に対処する上で、GAIの役割を掘り下げ、通信の機密性、認証、可用性、レジリエンス、整合性に重点を置いています。
論文 参考訳(メタデータ) (2024-02-21T06:22:41Z) - Autonomous Threat Hunting: A Future Paradigm for AI-Driven Threat Intelligence [0.0]
人工知能(AI)と従来の脅威インテリジェンス方法論の融合を概観する。
従来の脅威インテリジェンスプラクティスに対するAIと機械学習の変革的な影響を検査する。
ケーススタディと評価は、AI駆動の脅威インテリジェンスを採用する組織から学んだ成功物語と教訓を強調している。
論文 参考訳(メタデータ) (2023-12-30T17:36:08Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - Decoding the Threat Landscape : ChatGPT, FraudGPT, and WormGPT in Social Engineering Attacks [0.0]
ジェネレーティブAIモデルは、サイバー攻撃の分野に革命をもたらし、悪意あるアクターに、説得力がありパーソナライズされたフィッシングルアーを作る力を与えている。
これらのモデルであるChatGPT、FraudGPT、WormGPTは、既存の脅威を増大させ、新たなリスクの次元へと導いてきた。
これらの脅威に対処するため、従来のセキュリティ対策、AIによるセキュリティソリューション、サイバーセキュリティにおける協調的なアプローチなど、さまざまな戦略を概説する。
論文 参考訳(メタデータ) (2023-10-09T10:31:04Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
ワークショップは、サイバーセキュリティの問題へのAIの適用に焦点を当てる。
サイバーシステムは大量のデータを生成し、これを効果的に活用することは人間の能力を超えます。
論文 参考訳(メタデータ) (2022-02-28T18:27:41Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
人工知能(AI)の最近の進歩は、サイバーセキュリティのための行動分析(UEBA)に新たな能力をもたらした。
本稿では、検出プロセスを改善し、人間の専門知識を効果的に活用することにより、この攻撃を効果的に軽減するソリューションを提案する。
論文 参考訳(メタデータ) (2020-01-13T13:54:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。