Memory OS of AI Agent
- URL: http://arxiv.org/abs/2506.06326v1
- Date: Fri, 30 May 2025 15:36:51 GMT
- Title: Memory OS of AI Agent
- Authors: Jiazheng Kang, Mingming Ji, Zhe Zhao, Ting Bai,
- Abstract summary: Large Language Models (LLMs) face a crucial challenge from fixed context windows and inadequate memory management.<n>We propose a Memory Operating System, i.e., MemoryOS, to achieve comprehensive and efficient memory management for AI agents.
- Score: 3.8665965906369375
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) face a crucial challenge from fixed context windows and inadequate memory management, leading to a severe shortage of long-term memory capabilities and limited personalization in the interactive experience with AI agents. To overcome this challenge, we innovatively propose a Memory Operating System, i.e., MemoryOS, to achieve comprehensive and efficient memory management for AI agents. Inspired by the memory management principles in operating systems, MemoryOS designs a hierarchical storage architecture and consists of four key modules: Memory Storage, Updating, Retrieval, and Generation. Specifically, the architecture comprises three levels of storage units: short-term memory, mid-term memory, and long-term personal memory. Key operations within MemoryOS include dynamic updates between storage units: short-term to mid-term updates follow a dialogue-chain-based FIFO principle, while mid-term to long-term updates use a segmented page organization strategy. Our pioneering MemoryOS enables hierarchical memory integration and dynamic updating. Extensive experiments on the LoCoMo benchmark show an average improvement of 49.11% on F1 and 46.18% on BLEU-1 over the baselines on GPT-4o-mini, showing contextual coherence and personalized memory retention in long conversations. The implementation code is open-sourced at https://github.com/BAI-LAB/MemoryOS.
Related papers
- RoboMemory: A Brain-inspired Multi-memory Agentic Framework for Lifelong Learning in Physical Embodied Systems [29.881808496043387]
We present RoboMemory, a brain-inspired multi-memory framework for lifelong learning in physical embodied systems.<n>It addresses challenges in real-world environments: continuous learning, multi-module memory latency, task correlation capture, and infinite-loop mitigation in closed-loop planning.
arXiv Detail & Related papers (2025-08-02T15:39:42Z) - Hierarchical Memory for High-Efficiency Long-Term Reasoning in LLM Agents [19.04968632268433]
We propose a hierarchical memory architecture for Large Language Model Agents (LLM Agents)<n>Each memory vector is embedded with a positional index encoding pointing to its semantically related sub-memories in the next layer.<n>During the reasoning phase, an index-based routing mechanism enables efficient, layer-by-layer retrieval without performing exhaustive similarity computations.
arXiv Detail & Related papers (2025-07-23T12:45:44Z) - MemOS: A Memory OS for AI System [116.87568350346537]
Large Language Models (LLMs) have become an essential infrastructure for Artificial General Intelligence (AGI)<n>Existing models mainly rely on static parameters and short-lived contextual states, limiting their ability to track user preferences or update knowledge over extended periods.<n>MemOS is a memory operating system that treats memory as a manageable system resource.
arXiv Detail & Related papers (2025-07-04T17:21:46Z) - MEM1: Learning to Synergize Memory and Reasoning for Efficient Long-Horizon Agents [84.62985963113245]
We introduce MEM1, an end-to-end reinforcement learning framework that enables agents to operate with constant memory across long multi-turn tasks.<n>At each turn, MEM1 updates a compact shared internal state that jointly supports memory consolidation and reasoning.<n>We show that MEM1-7B improves performance by 3.5x while reducing memory usage by 3.7x compared to Qwen2.5-14B-Instruct on a 16-objective multi-hop QA task.
arXiv Detail & Related papers (2025-06-18T19:44:46Z) - MemOS: An Operating System for Memory-Augmented Generation (MAG) in Large Language Models [31.944531660401722]
We introduce MemOS, a memory operating system designed for Large Language Models (LLMs)<n>At its core is the MemCube, a standardized memory abstraction that enables tracking, fusion, and migration of heterogeneous memory.<n>MemOS establishes a memory-centric execution framework with strong controllability, adaptability, and evolvability.
arXiv Detail & Related papers (2025-05-28T08:27:12Z) - Rethinking Memory in AI: Taxonomy, Operations, Topics, and Future Directions [55.19217798774033]
Memory is a fundamental component of AI systems, underpinning large language models (LLMs)-based agents.<n>In this survey, we first categorize memory representations into parametric and contextual forms.<n>We then introduce six fundamental memory operations: Consolidation, Updating, Indexing, Forgetting, Retrieval, and Compression.
arXiv Detail & Related papers (2025-05-01T17:31:33Z) - A-MEM: Agentic Memory for LLM Agents [42.50876509391843]
Large language model (LLM) agents require memory systems to leverage historical experiences.<n>Current memory systems enable basic storage and retrieval but lack sophisticated memory organization.<n>This paper proposes a novel agentic memory system for LLM agents that can dynamically organize memories in an agentic way.
arXiv Detail & Related papers (2025-02-17T18:36:14Z) - KARMA: Augmenting Embodied AI Agents with Long-and-short Term Memory Systems [12.461941212597877]
Embodied AI agents often face difficulties with in-context memory, leading to inefficiencies and errors in task execution.<n>We introduce KARMA, an innovative memory system that integrates long-term and short-term memory modules.<n>Our memory-augmented embodied AI agent improves success rates by 1.3x and 2.3x in Composite Tasks and Complex Tasks.
arXiv Detail & Related papers (2024-09-23T11:02:46Z) - B'MOJO: Hybrid State Space Realizations of Foundation Models with Eidetic and Fading Memory [91.81390121042192]
We develop a class of models called B'MOJO to seamlessly combine eidetic and fading memory within an composable module.
B'MOJO's ability to modulate eidetic and fading memory results in better inference on longer sequences tested up to 32K tokens.
arXiv Detail & Related papers (2024-07-08T18:41:01Z) - SCM: Enhancing Large Language Model with Self-Controlled Memory Framework [54.33686574304374]
Large Language Models (LLMs) are constrained by their inability to process lengthy inputs, resulting in the loss of critical historical information.<n>We propose the Self-Controlled Memory (SCM) framework to enhance the ability of LLMs to maintain long-term memory and recall relevant information.
arXiv Detail & Related papers (2023-04-26T07:25:31Z) - XMem: Long-Term Video Object Segmentation with an Atkinson-Shiffrin
Memory Model [137.50614198301733]
We present XMem, a video object segmentation architecture for long videos with unified feature memory stores.
We develop an architecture that incorporates multiple independent yet deeply-connected feature memory stores.
XMem greatly exceeds state-of-the-art performance on long-video datasets.
arXiv Detail & Related papers (2022-07-14T17:59:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.