RoboMemory: A Brain-inspired Multi-memory Agentic Framework for Lifelong Learning in Physical Embodied Systems
- URL: http://arxiv.org/abs/2508.01415v2
- Date: Thu, 07 Aug 2025 08:47:22 GMT
- Title: RoboMemory: A Brain-inspired Multi-memory Agentic Framework for Lifelong Learning in Physical Embodied Systems
- Authors: Mingcong Lei, Honghao Cai, Binbin Que, Zezhou Cui, Liangchen Tan, Junkun Hong, Gehan Hu, Shuangyu Zhu, Yimou Wu, Shaohan Jiang, Ge Wang, Zhen Li, Shuguang Cui, Yiming Zhao, Yatong Han,
- Abstract summary: We present RoboMemory, a brain-inspired multi-memory framework for lifelong learning in physical embodied systems.<n>It addresses challenges in real-world environments: continuous learning, multi-module memory latency, task correlation capture, and infinite-loop mitigation in closed-loop planning.
- Score: 29.881808496043387
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present RoboMemory, a brain-inspired multi-memory framework for lifelong learning in physical embodied systems, addressing critical challenges in real-world environments: continuous learning, multi-module memory latency, task correlation capture, and infinite-loop mitigation in closed-loop planning. Grounded in cognitive neuroscience, it integrates four core modules: the Information Preprocessor (thalamus-like), the Lifelong Embodied Memory System (hippocampus-like), the Closed-Loop Planning Module (prefrontal lobe-like), and the Low-Level Executer (cerebellum-like) to enable long-term planning and cumulative learning. The Lifelong Embodied Memory System, central to the framework, alleviates inference speed issues in complex memory frameworks via parallelized updates/retrieval across Spatial, Temporal, Episodic, and Semantic submodules. It incorporates a dynamic Knowledge Graph (KG) and consistent architectural design to enhance memory consistency and scalability. Evaluations on EmbodiedBench show RoboMemory outperforms the open-source baseline (Qwen2.5-VL-72B-Ins) by 25% in average success rate and surpasses the closed-source State-of-the-Art (SOTA) (Claude3.5-Sonnet) by 5%, establishing new SOTA. Ablation studies validate key components (critic, spatial memory, long-term memory), while real-world deployment confirms its lifelong learning capability with significantly improved success rates across repeated tasks. RoboMemory alleviates high latency challenges with scalability, serving as a foundational reference for integrating multi-modal memory systems in physical robots.
Related papers
- MemOS: A Memory OS for AI System [115.28320211684103]
Large Language Models (LLMs) have become an essential infrastructure for Artificial General Intelligence (AGI)<n>Existing models mainly rely on static parameters and short-lived contextual states, limiting their ability to track user preferences or update knowledge over extended periods.<n>MemOS is a memory operating system that treats memory as a manageable system resource.
arXiv Detail & Related papers (2025-07-04T17:21:46Z) - MEM1: Learning to Synergize Memory and Reasoning for Efficient Long-Horizon Agents [84.62985963113245]
We introduce MEM1, an end-to-end reinforcement learning framework that enables agents to operate with constant memory across long multi-turn tasks.<n>At each turn, MEM1 updates a compact shared internal state that jointly supports memory consolidation and reasoning.<n>We show that MEM1-7B improves performance by 3.5x while reducing memory usage by 3.7x compared to Qwen2.5-14B-Instruct on a 16-objective multi-hop QA task.
arXiv Detail & Related papers (2025-06-18T19:44:46Z) - Memory OS of AI Agent [3.8665965906369375]
Large Language Models (LLMs) face a crucial challenge from fixed context windows and inadequate memory management.<n>We propose a Memory Operating System, i.e., MemoryOS, to achieve comprehensive and efficient memory management for AI agents.
arXiv Detail & Related papers (2025-05-30T15:36:51Z) - MemOS: An Operating System for Memory-Augmented Generation (MAG) in Large Language Models [31.944531660401722]
We introduce MemOS, a memory operating system designed for Large Language Models (LLMs)<n>At its core is the MemCube, a standardized memory abstraction that enables tracking, fusion, and migration of heterogeneous memory.<n>MemOS establishes a memory-centric execution framework with strong controllability, adaptability, and evolvability.
arXiv Detail & Related papers (2025-05-28T08:27:12Z) - Memorization and Knowledge Injection in Gated LLMs [8.305942415868042]
Large Language Models (LLMs) currently struggle to sequentially add new memories and integrate new knowledge.<n>Memory Embedded in Gated LLMs (MEGa) injects event memories directly into the weights of LLMs.<n>During inference, a gating mechanism activates relevant memory weights by matching query embeddings to stored memory embeddings.
arXiv Detail & Related papers (2025-04-30T00:28:32Z) - InternLM-XComposer2.5-OmniLive: A Comprehensive Multimodal System for Long-term Streaming Video and Audio Interactions [104.90258030688256]
This project introduces disentangled streaming perception, reasoning, and memory mechanisms, enabling real-time interaction with streaming video and audio input.<n>This project simulates human-like cognition, enabling multimodal large language models to provide continuous and adaptive service over time.
arXiv Detail & Related papers (2024-12-12T18:58:30Z) - Stable Hadamard Memory: Revitalizing Memory-Augmented Agents for Reinforcement Learning [64.93848182403116]
Current deep-learning memory models struggle in reinforcement learning environments that are partially observable and long-term.
We introduce the Stable Hadamard Memory, a novel memory model for reinforcement learning agents.
Our approach significantly outperforms state-of-the-art memory-based methods on challenging partially observable benchmarks.
arXiv Detail & Related papers (2024-10-14T03:50:17Z) - B'MOJO: Hybrid State Space Realizations of Foundation Models with Eidetic and Fading Memory [91.81390121042192]
We develop a class of models called B'MOJO to seamlessly combine eidetic and fading memory within an composable module.
B'MOJO's ability to modulate eidetic and fading memory results in better inference on longer sequences tested up to 32K tokens.
arXiv Detail & Related papers (2024-07-08T18:41:01Z) - Saliency-Augmented Memory Completion for Continual Learning [8.243137410556495]
How to forget is a problem continual learning must address.
Our paper proposes a new saliency-augmented memory completion framework for continual learning.
arXiv Detail & Related papers (2022-12-26T18:06:39Z) - Memory-Guided Semantic Learning Network for Temporal Sentence Grounding [55.31041933103645]
We propose a memory-augmented network that learns and memorizes the rarely appeared content in TSG tasks.
MGSL-Net consists of three main parts: a cross-modal inter-action module, a memory augmentation module, and a heterogeneous attention module.
arXiv Detail & Related papers (2022-01-03T02:32:06Z) - Memory and attention in deep learning [19.70919701635945]
Memory construction for machine is inevitable.
Recent progresses on modeling memory in deep learning have revolved around external memory constructions.
The aim of this thesis is to advance the understanding on memory and attention in deep learning.
arXiv Detail & Related papers (2021-07-03T09:21:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.