Multi-Platform Methane Plume Detection via Model and Domain Adaptation
- URL: http://arxiv.org/abs/2506.06348v1
- Date: Mon, 02 Jun 2025 00:38:41 GMT
- Title: Multi-Platform Methane Plume Detection via Model and Domain Adaptation
- Authors: Vassiliki Mancoridis, Brian Bue, Jake H. Lee, Andrew K. Thorpe, Daniel Cusworth, Alana Ayasse, Philip G. Brodrick, Riley Duren,
- Abstract summary: We develop a spaceborne methane plume classifier using data from the EMIT imaging spectroscopy mission.<n>We use CycleGAN, an unsupervised image-to-image translation technique, to align the data distributions between airborne and spaceborne contexts.
- Score: 0.16678439732526815
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prioritizing methane for near-term climate action is crucial due to its significant impact on global warming. Previous work used columnwise matched filter products from the airborne AVIRIS-NG imaging spectrometer to detect methane plume sources; convolutional neural networks (CNNs) discerned anthropogenic methane plumes from false positive enhancements. However, as an increasing number of remote sensing platforms are used for methane plume detection, there is a growing need to address cross-platform alignment. In this work, we describe model- and data-driven machine learning approaches that leverage airborne observations to improve spaceborne methane plume detection, reconciling the distributional shifts inherent with performing the same task across platforms. We develop a spaceborne methane plume classifier using data from the EMIT imaging spectroscopy mission. We refine classifiers trained on airborne imagery from AVIRIS-NG campaigns using transfer learning, outperforming the standalone spaceborne model. Finally, we use CycleGAN, an unsupervised image-to-image translation technique, to align the data distributions between airborne and spaceborne contexts. Translating spaceborne EMIT data to the airborne AVIRIS-NG domain using CycleGAN and applying airborne classifiers directly yields the best plume detection results. This methodology is useful not only for data simulation, but also for direct data alignment. Though demonstrated on the task of methane plume detection, our work more broadly demonstrates a data-driven approach to align related products obtained from distinct remote sensing instruments.
Related papers
- Towards Operational Automated Greenhouse Gas Plume Detection [0.15556354682377155]
This work reviews and addresses several key obstacles in the field: data and label quality control, prevention of biases, and correctly aligned modeling objectives.<n>We demonstrate through rigorous experiments using multicampaign data from airborne and spaceborne instruments that are able to achieve operational performance detection.<n>We provide analysis-ready data, models, and source code for deployment and work to define a set of best practices.
arXiv Detail & Related papers (2025-05-27T22:22:54Z) - Machine Learning for Methane Detection and Quantification from Space -- A survey [49.7996292123687]
Methane (CH_4) is a potent anthropogenic greenhouse gas, contributing 86 times more to global warming than Carbon Dioxide (CO_2) over 20 years.
This work expands existing information on operational methane point source detection sensors in the Short-Wave Infrared (SWIR) bands.
It reviews the state-of-the-art for traditional as well as Machine Learning (ML) approaches.
arXiv Detail & Related papers (2024-08-27T15:03:20Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
Smoke and dust affect the performance of any mobile robotic platform due to their reliance on onboard perception systems.
This paper proposes a novel modular computation filtration pipeline based on intensity and spatial information.
arXiv Detail & Related papers (2023-08-14T16:48:57Z) - Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol
Particles for Frontier Exploration [55.41644538483948]
This paper introduces a multimodal dataset from the harsh and unstructured underground environment with aerosol particles.
It contains synchronized raw data measurements from all onboard sensors in Robot Operating System (ROS) format.
The focus of this paper is not only to capture both temporal and spatial data diversities but also to present the impact of harsh conditions on captured data.
arXiv Detail & Related papers (2023-04-27T20:21:18Z) - Spectral Transfer Guided Active Domain Adaptation For Thermal Imagery [1.911678487931003]
We propose an active domain adaptation method to examine the efficiency of combining the visible spectrum and thermal imagery modalities.
We used the large-scale visible spectrum dataset MS-COCO as the source domain and the thermal dataset FLIR ADAS as the target domain.
Our proposed method outperforms the state-of-the-art active domain adaptation methods.
arXiv Detail & Related papers (2023-04-14T10:04:42Z) - MethaneMapper: Spectral Absorption aware Hyperspectral Transformer for
Methane Detection [13.247385727508155]
Methane is the chief contributor to global climate change.
We propose a novel end-to-end spectral absorption wavelength aware transformer network, MethaneMapper, to detect and quantify the emissions.
MethaneMapper achieves 0.63 mAP in detection and reduces the model size (by 5x) compared to the current state of the art.
arXiv Detail & Related papers (2023-04-05T22:15:18Z) - Environmental Sensor Placement with Convolutional Gaussian Neural
Processes [65.13973319334625]
It is challenging to place sensors in a way that maximises the informativeness of their measurements, particularly in remote regions like Antarctica.
Probabilistic machine learning models can suggest informative sensor placements by finding sites that maximally reduce prediction uncertainty.
This paper proposes using a convolutional Gaussian neural process (ConvGNP) to address these issues.
arXiv Detail & Related papers (2022-11-18T17:25:14Z) - Detecting Methane Plumes using PRISMA: Deep Learning Model and Data
Augmentation [67.32835203947133]
New generation of hyperspectral imagers, such as PRISMA, has improved significantly our detection capability of methane (CH4) plumes from space at high spatial resolution (30m)
We present here a complete framework to identify CH4 plumes using images from the PRISMA satellite mission and a deep learning model able to detect plumes over large areas.
arXiv Detail & Related papers (2022-11-17T17:36:05Z) - Object recognition in atmospheric turbulence scenes [2.657505380055164]
We propose a novel framework that learns distorted features to detect and classify object types in turbulent environments.
Specifically, we utilise deformable convolutions to handle spatial displacement.
We show that the proposed framework outperforms the benchmark with a mean Average Precision (mAP) score exceeding 30%.
arXiv Detail & Related papers (2022-10-25T20:21:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.