Deep Learning Enhanced Multi-Day Turnover Quantitative Trading Algorithm for Chinese A-Share Market
- URL: http://arxiv.org/abs/2506.06356v1
- Date: Tue, 03 Jun 2025 01:59:55 GMT
- Title: Deep Learning Enhanced Multi-Day Turnover Quantitative Trading Algorithm for Chinese A-Share Market
- Authors: Yimin Du,
- Abstract summary: Algorithm is trained on comprehensive A-share data from 2010-2020 and rigorously backtested on 2021-2024 data.<n>It achieves remarkable performance with 15.2% annualized returns, maximum drawdown constrained below 5%, and a Sharpe ratio of 1.87.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a sophisticated multi-day turnover quantitative trading algorithm that integrates advanced deep learning techniques with comprehensive cross-sectional stock prediction for the Chinese A-share market. Our framework combines five interconnected modules: initial stock selection through deep cross-sectional prediction networks, opening signal distribution analysis using mixture models for arbitrage identification, market capitalization and liquidity-based dynamic position sizing, grid-search optimized profit-taking and stop-loss mechanisms, and multi-granularity volatility-based market timing models. The algorithm employs a novel approach to balance capital efficiency with risk management through adaptive holding periods and sophisticated entry/exit timing. Trained on comprehensive A-share data from 2010-2020 and rigorously backtested on 2021-2024 data, our method achieves remarkable performance with 15.2\% annualized returns, maximum drawdown constrained below 5\%, and a Sharpe ratio of 1.87. The strategy demonstrates exceptional scalability by maintaining 50-100 daily positions with a 9-day maximum holding period, incorporating dynamic profit-taking and stop-loss mechanisms that enhance capital turnover efficiency while preserving risk-adjusted returns. Our approach exhibits robust performance across various market regimes while maintaining high capital capacity suitable for institutional deployment.
Related papers
- Building crypto portfolios with agentic AI [46.348283638884425]
The rapid growth of crypto markets has opened new opportunities for investors, but at the same time exposed them to high volatility.<n>This paper presents a practical application of a multi-agent system designed to autonomously construct and evaluate crypto-asset allocations.
arXiv Detail & Related papers (2025-07-11T18:03:51Z) - MTS: A Deep Reinforcement Learning Portfolio Management Framework with Time-Awareness and Short-Selling [0.8642326601683299]
This paper introduces a Deep Reinforcement Learning Portfolio Management Framework with Time-Awareness and Short-Selling.<n>It addresses limitations in dynamic risk management, exploitation of temporal markets, and incorporation of complex trading strategies such as short-selling.<n>It consistently achieves higher cumulative returns, Sharpe, Omega, and Sortino ratios, underscoring its effectiveness in balancing risk and return.
arXiv Detail & Related papers (2025-03-06T06:41:17Z) - Automate Strategy Finding with LLM in Quant Investment [15.475504003134787]
We present a novel three-stage framework leveraging Large Language Models (LLMs) within a risk-aware multi-agent system for automate strategy finding in quantitative finance.<n>Our approach addresses the brittleness of traditional deep learning models in financial applications by: employing prompt-engineered LLMs to generate executable alpha factor candidates across diverse financial data.<n> Experimental results demonstrate the robust performance of the strategy in Chinese & US market regimes compared to established benchmarks.
arXiv Detail & Related papers (2024-09-10T07:42:28Z) - Optimizing Portfolio with Two-Sided Transactions and Lending: A Reinforcement Learning Framework [0.0]
This study presents a Reinforcement Learning-based portfolio management model tailored for high-risk environments.
We implement the model using the Soft Actor-Critic (SAC) agent with a Convolutional Neural Network with Multi-Head Attention.
Tested over two 16-month periods of varying market volatility, the model significantly outperformed benchmarks.
arXiv Detail & Related papers (2024-08-09T23:36:58Z) - Stockformer: A Price-Volume Factor Stock Selection Model Based on Wavelet Transform and Multi-Task Self-Attention Networks [3.7608255115473592]
This paper introduces Stockformer, a price-volume factor stock selection model that integrates wavelet transformation and a multitask self-attention network.
Stockformer decomposes stock returns into high and low frequencies, meticulously capturing long-term market trends and abrupt events.
Experimental results show that Stockformer outperforms existing advanced methods on multiple real stock market datasets.
arXiv Detail & Related papers (2023-11-23T04:33:47Z) - Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
This paper proposes an effective algorithm based on neural networks to take advantage of these investment products.
A deep neural network, which outputs the allocation weight of each asset at a time interval, is trained to maximize the Sharpe ratio.
A novel loss term is proposed to regulate the network's bias towards a specific asset, thus enforcing the network to learn an allocation strategy that is close to a minimum variance strategy.
arXiv Detail & Related papers (2023-10-02T12:33:28Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - IMM: An Imitative Reinforcement Learning Approach with Predictive
Representation Learning for Automatic Market Making [33.23156884634365]
Reinforcement Learning technology has achieved remarkable success in quantitative trading.
Most existing RL-based market making methods focus on optimizing single-price level strategies.
We propose Imitative Market Maker (IMM), a novel RL framework leveraging both knowledge from suboptimal signal-based experts and direct policy interactions.
arXiv Detail & Related papers (2023-08-17T11:04:09Z) - Joint Latent Topic Discovery and Expectation Modeling for Financial
Markets [45.758436505779386]
We present a groundbreaking framework for financial market analysis.
This approach is the first to jointly model investor expectations and automatically mine latent stock relationships.
Our model consistently achieves an annual return exceeding 10%.
arXiv Detail & Related papers (2023-06-01T01:36:51Z) - Can Perturbations Help Reduce Investment Risks? Risk-Aware Stock
Recommendation via Split Variational Adversarial Training [44.7991257631318]
We propose a novel Split Variational Adrial Training (SVAT) method for risk-aware stock recommendation.
By lowering the volatility of the stock recommendation model, SVAT effectively reduces investment risks and outperforms state-of-the-art baselines by more than 30% in terms of risk-adjusted profits.
arXiv Detail & Related papers (2023-04-20T12:10:12Z) - Deep Reinforcement Learning for Long-Short Portfolio Optimization [7.131902599861306]
This paper constructs a Deep Reinforcement Learning (DRL) portfolio management framework with short-selling mechanisms conforming to actual trading rules.<n>Key innovations include development of a comprehensive short-selling mechanism in continuous trading that accounts for dynamic evolution of transactions across time periods.<n>Compared to traditional approaches, this model delivers superior risk-adjusted returns while reducing maximum drawdown.
arXiv Detail & Related papers (2020-12-26T16:25:20Z) - Stock2Vec: A Hybrid Deep Learning Framework for Stock Market Prediction
with Representation Learning and Temporal Convolutional Network [71.25144476293507]
We have proposed to develop a global hybrid deep learning framework to predict the daily prices in the stock market.
With representation learning, we derived an embedding called Stock2Vec, which gives us insight for the relationship among different stocks.
Our hybrid framework integrates both advantages and achieves better performance on the stock price prediction task than several popular benchmarked models.
arXiv Detail & Related papers (2020-09-29T22:54:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.