Understanding Emergent Behaviours in Multi-Agent Systems with
Evolutionary Game Theory
- URL: http://arxiv.org/abs/2205.07369v1
- Date: Sun, 15 May 2022 20:01:48 GMT
- Title: Understanding Emergent Behaviours in Multi-Agent Systems with
Evolutionary Game Theory
- Authors: The Anh Han
- Abstract summary: This paper summarises some main research directions and challenges tackled in our group, using methods from EGT and ABM.
This brief aims to sensitize the reader to EGT based issues, results and prospects, which are accruing in importance for the modeling of minds with machines.
In all cases, important open problems in MAS research as viewed or prioritised by the group are described.
- Score: 1.0279748604797907
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The mechanisms of emergence and evolution of collective behaviours in
dynamical Multi-Agent Systems (MAS) of multiple interacting agents, with
diverse behavioral strategies in co-presence, have been undergoing mathematical
study via Evolutionary Game Theory (EGT). Their systematic study also resorts
to agent-based modelling and simulation (ABM) techniques, thus enabling the
study of aforesaid mechanisms under a variety of conditions, parameters, and
alternative virtual games. This paper summarises some main research directions
and challenges tackled in our group, using methods from EGT and ABM. These
range from the introduction of cognitive and emotional mechanisms into agents'
implementation in an evolving MAS, to the cost-efficient interference for
promoting prosocial behaviours in complex networks, to the regulation and
governance of AI safety development ecology, and to the equilibrium analysis of
random evolutionary multi-player games. This brief aims to sensitize the reader
to EGT based issues, results and prospects, which are accruing in importance
for the modeling of minds with machines and the engineering of prosocial
behaviours in dynamical MAS, with impact on our understanding of the emergence
and stability of collective behaviours. In all cases, important open problems
in MAS research as viewed or prioritised by the group are described.
Related papers
- Evolving Neural Networks Reveal Emergent Collective Behavior from Minimal Agent Interactions [0.0]
We investigate how neural networks evolve to control agents' behavior in a dynamic environment.
Simpler behaviors, such as lane formation and laminar flow, are characterized by more linear network operations.
Specific environmental parameters, such as moderate noise, broader field of view, and lower agent density, promote the evolution of non-linear networks.
arXiv Detail & Related papers (2024-10-25T17:43:00Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
We propose PersLLM, integrating psychology-grounded principles of personality: social practice, consistency, and dynamic development.
We incorporate personality traits directly into the model parameters, enhancing the model's resistance to induction, promoting consistency, and supporting the dynamic evolution of personality.
arXiv Detail & Related papers (2024-07-17T08:13:22Z) - Transforming Competition into Collaboration: The Revolutionary Role of Multi-Agent Systems and Language Models in Modern Organizations [0.0]
This article explores the influence of computational entities based on multi-agent systems theory (SMA) and large language models (LLM) on human user interaction.
In our approach we employ agents developed from large language models (LLM), each with distinct prototyping that considers behavioral elements.
We demonstrate the potential of developing agents useful for organizational strategies, based on multi-agent system theories (SMA) and innovative uses based on large language models (LLM based)
arXiv Detail & Related papers (2024-03-12T15:56:10Z) - Mathematics of multi-agent learning systems at the interface of game
theory and artificial intelligence [0.8049333067399385]
Evolutionary Game Theory and Artificial Intelligence are two fields that, at first glance, might seem distinct, but they have notable connections and intersections.
The former focuses on the evolution of behaviors (or strategies) in a population, where individuals interact with others and update their strategies based on imitation (or social learning)
The latter, meanwhile, is centered on machine learning algorithms and (deep) neural networks.
arXiv Detail & Related papers (2024-03-09T17:36:54Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - Expanding the Role of Affective Phenomena in Multimodal Interaction
Research [57.069159905961214]
We examined over 16,000 papers from selected conferences in multimodal interaction, affective computing, and natural language processing.
We identify 910 affect-related papers and present our analysis of the role of affective phenomena in these papers.
We find limited research on how affect and emotion predictions might be used by AI systems to enhance machine understanding of human social behaviors and cognitive states.
arXiv Detail & Related papers (2023-05-18T09:08:39Z) - Machine Psychology [54.287802134327485]
We argue that a fruitful direction for research is engaging large language models in behavioral experiments inspired by psychology.
We highlight theoretical perspectives, experimental paradigms, and computational analysis techniques that this approach brings to the table.
It paves the way for a "machine psychology" for generative artificial intelligence (AI) that goes beyond performance benchmarks.
arXiv Detail & Related papers (2023-03-24T13:24:41Z) - Active Inference in Robotics and Artificial Agents: Survey and
Challenges [51.29077770446286]
We review the state-of-the-art theory and implementations of active inference for state-estimation, control, planning and learning.
We showcase relevant experiments that illustrate its potential in terms of adaptation, generalization and robustness.
arXiv Detail & Related papers (2021-12-03T12:10:26Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
Multi-agent imitation learning aims to train multiple agents to perform tasks from demonstrations by learning a mapping between observations and actions.
In this paper, we propose to use copula, a powerful statistical tool for capturing dependence among random variables, to explicitly model the correlation and coordination in multi-agent systems.
Our proposed model is able to separately learn marginals that capture the local behavioral patterns of each individual agent, as well as a copula function that solely and fully captures the dependence structure among agents.
arXiv Detail & Related papers (2021-07-10T03:49:41Z) - An active inference model of collective intelligence [0.0]
This paper posits a minimal agent-based model that simulates the relationship between local individual-level interaction and collective intelligence.
Results show that stepwise cognitive transitions increase system performance by providing complementary mechanisms for alignment between agents' local and global optima.
arXiv Detail & Related papers (2021-04-02T14:32:01Z) - Modelling Cooperation in Network Games with Spatio-Temporal Complexity [11.665246332943058]
We study the emergence of self-organized cooperation in complex gridworld domains.
Using multi-agent deep reinforcement learning, we simulate an agent society for a variety of plausible mechanisms.
Our methods have implications for mechanism design in both human and artificial agent systems.
arXiv Detail & Related papers (2021-02-13T12:04:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.