ResPF: Residual Poisson Flow for Efficient and Physically Consistent Sparse-View CT Reconstruction
- URL: http://arxiv.org/abs/2506.06400v1
- Date: Fri, 06 Jun 2025 01:43:35 GMT
- Title: ResPF: Residual Poisson Flow for Efficient and Physically Consistent Sparse-View CT Reconstruction
- Authors: Changsheng Fang, Yongtong Liu, Bahareh Morovati, Shuo Han, Yu Shi, Li Zhou, Shuyi Fan, Hengyong Yu,
- Abstract summary: Sparse-view computed tomography (CT) is a practical solution to reduce radiation dose, but the resulting inverse problem poses significant challenges for accurate image reconstruction.<n>Recent advances in generative modeling, particularly Poisson Flow Generative Models (PFGM), enable high-fidelity image synthesis.<n>We propose Residual Poisson Flow (ResPF) Generative Models for efficient and accurate sparse-view CT reconstruction.
- Score: 7.644299873269135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sparse-view computed tomography (CT) is a practical solution to reduce radiation dose, but the resulting ill-posed inverse problem poses significant challenges for accurate image reconstruction. Although deep learning and diffusion-based methods have shown promising results, they often lack physical interpretability or suffer from high computational costs due to iterative sampling starting from random noise. Recent advances in generative modeling, particularly Poisson Flow Generative Models (PFGM), enable high-fidelity image synthesis by modeling the full data distribution. In this work, we propose Residual Poisson Flow (ResPF) Generative Models for efficient and accurate sparse-view CT reconstruction. Based on PFGM++, ResPF integrates conditional guidance from sparse measurements and employs a hijacking strategy to significantly reduce sampling cost by skipping redundant initial steps. However, skipping early stages can degrade reconstruction quality and introduce unrealistic structures. To address this, we embed a data-consistency into each iteration, ensuring fidelity to sparse-view measurements. Yet, PFGM sampling relies on a fixed ordinary differential equation (ODE) trajectory induced by electrostatic fields, which can be disrupted by step-wise data consistency, resulting in unstable or degraded reconstructions. Inspired by ResNet, we introduce a residual fusion module to linearly combine generative outputs with data-consistent reconstructions, effectively preserving trajectory continuity. To the best of our knowledge, this is the first application of Poisson flow models to sparse-view CT. Extensive experiments on synthetic and clinical datasets demonstrate that ResPF achieves superior reconstruction quality, faster inference, and stronger robustness compared to state-of-the-art iterative, learning-based, and diffusion models.
Related papers
- Solving Inverse Problems with FLAIR [59.02385492199431]
Flow-based latent generative models are able to generate images with remarkable quality, even enabling text-to-image generation.<n>We present FLAIR, a novel training free variational framework that leverages flow-based generative models as a prior for inverse problems.<n>Results on standard imaging benchmarks demonstrate that FLAIR consistently outperforms existing diffusion- and flow-based methods in terms of reconstruction quality and sample diversity.
arXiv Detail & Related papers (2025-06-03T09:29:47Z) - Re-Visible Dual-Domain Self-Supervised Deep Unfolding Network for MRI Reconstruction [48.30341580103962]
We propose a novel re-visible dual-domain self-supervised deep unfolding network to address these issues.<n>We design a deep unfolding network based on Chambolle and Pock Proximal Point Algorithm (DUN-CP-PPA) to achieve end-to-end reconstruction.<n> Experiments conducted on the fastMRI and IXI datasets demonstrate that our method significantly outperforms state-of-the-art approaches in terms of reconstruction performance.
arXiv Detail & Related papers (2025-01-07T12:29:32Z) - Model Collapse in the Self-Consuming Chain of Diffusion Finetuning: A Novel Perspective from Quantitative Trait Modeling [10.159932782892865]
This paper examines Chain of Diffusion, where a pretrained text-to-image diffusion model is finetuned on its own generated images.<n>We demonstrate that severe image quality degradation was universal and identify CFG scale as the key factor impacting this model collapse.<n>We propose Reusable Diffusion Finetuning (ReDiFine), a simple yet effective strategy inspired by genetic mutations.
arXiv Detail & Related papers (2024-07-04T13:41:54Z) - Highly Accelerated MRI via Implicit Neural Representation Guided Posterior Sampling of Diffusion Models [2.5412006057370893]
Implicit neural representation (INR) has emerged as a powerful paradigm for solving inverse problems.
Our proposed framework can be a generalizable framework to solve inverse problems in other medical imaging tasks.
arXiv Detail & Related papers (2024-07-03T01:37:56Z) - Deep Equilibrium Diffusion Restoration with Parallel Sampling [120.15039525209106]
Diffusion model-based image restoration (IR) aims to use diffusion models to recover high-quality (HQ) images from degraded images, achieving promising performance.
Most existing methods need long serial sampling chains to restore HQ images step-by-step, resulting in expensive sampling time and high computation costs.
In this work, we aim to rethink the diffusion model-based IR models through a different perspective, i.e., a deep equilibrium (DEQ) fixed point system, called DeqIR.
arXiv Detail & Related papers (2023-11-20T08:27:56Z) - Data-iterative Optimization Score Model for Stable Ultra-Sparse-View CT
Reconstruction [2.2336243882030025]
We propose an iterative optimization data scoring model (DOSM) for sparse-view CT reconstruction.
DOSM integrates data consistency into its data consistency element, effectively balancing measurement data and generative model constraints.
We leverage conventional techniques to optimize DOSM updates.
arXiv Detail & Related papers (2023-08-28T09:23:18Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - Towards performant and reliable undersampled MR reconstruction via
diffusion model sampling [67.73698021297022]
DiffuseRecon is a novel diffusion model-based MR reconstruction method.
It guides the generation process based on the observed signals.
It does not require additional training on specific acceleration factors.
arXiv Detail & Related papers (2022-03-08T02:25:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.