論文の概要: Membership Inference Attacks for Unseen Classes
- arxiv url: http://arxiv.org/abs/2506.06488v1
- Date: Fri, 06 Jun 2025 19:27:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-10 16:33:10.295008
- Title: Membership Inference Attacks for Unseen Classes
- Title(参考訳): 未知のクラスに対するメンバーシップ推論攻撃
- Authors: Pratiksha Thaker, Neil Kale, Zhiwei Steven Wu, Virginia Smith,
- Abstract要約: 本研究では,サブクラス全体へのアクセスが不可能な会員推論攻撃について検討する。
シャドーモデル攻撃の性能は壊滅的に低下することを示す。
次に、同じ制限を持たない別のアプローチ、量子回帰の可能性を実証する。
- 参考スコア(独自算出の注目度): 35.2425044298671
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Shadow model attacks are the state-of-the-art approach for membership inference attacks on machine learning models. However, these attacks typically assume an adversary has access to a background (nonmember) data distribution that matches the distribution the target model was trained on. We initiate a study of membership inference attacks where the adversary or auditor cannot access an entire subclass from the distribution -- a more extreme but realistic version of distribution shift than has been studied previously. In this setting, we first show that the performance of shadow model attacks degrades catastrophically, and then demonstrate the promise of another approach, quantile regression, that does not have the same limitations. We show that quantile regression attacks consistently outperform shadow model attacks in the class dropout setting -- for example, quantile regression attacks achieve up to 11$\times$ the TPR of shadow models on the unseen class on CIFAR-100, and achieve nontrivial TPR on ImageNet even with 90% of training classes removed. We also provide a theoretical model that illustrates the potential and limitations of this approach.
- Abstract(参考訳): シャドウモデルアタックは、機械学習モデルに対するメンバシップ推論アタックに対する最先端のアプローチである。
しかしながら、これらの攻撃は通常、ターゲットモデルがトレーニングした分布と一致する背景(非メンバー)データ分布にアクセス可能な敵を仮定する。
我々は,これまで研究されてきたよりも極端に現実的な分布シフトのサブクラス全体にアクセスできない,メンバシップ推論攻撃の研究を開始する。この設定では,シャドウモデル攻撃のパフォーマンスが壊滅的に低下し,同じ制限を持たない別のアプローチである量子回帰攻撃の可能性を実証する。我々は,量子回帰攻撃がクラスドロップアウト設定において一貫して優れたシャドウモデル攻撃であることを示す。例えば,量子回帰攻撃は,CIFAR-100の未確認クラスのシャドウモデルのTPRを最大11ドル\times$で,イメージネット上では90%のトレーニングが取り除かれても,非自明なTPRを実現する。
また、このアプローチの可能性と限界を示す理論的モデルも提供します。
関連論文リスト
- On Transfer-based Universal Attacks in Pure Black-box Setting [94.92884394009288]
攻撃性能における対象モデルデータの事前知識とクラス数の役割について検討する。
また、分析に基づいていくつかの興味深い洞察を与え、先行が伝達可能性スコアの過大評価を引き起こすことを示した。
論文 参考訳(メタデータ) (2025-04-11T10:41:20Z) - Membership Inference Attacks on Diffusion Models via Quantile Regression [30.30033625685376]
我々は,家族関係推論(MI)攻撃による拡散モデルのプライバシー上の脆弱性を実証する。
提案したMI攻撃は、トレーニングに使用されていない例における再構成損失の分布を予測(定量化)する量子レグレッションモデルを学習する。
我々の攻撃は従来の最先端攻撃よりも優れており、計算コストは著しく低い。
論文 参考訳(メタデータ) (2023-12-08T16:21:24Z) - Defense Against Model Extraction Attacks on Recommender Systems [53.127820987326295]
本稿では、モデル抽出攻撃に対するリコメンデータシステムに対する防御のために、グラディエントベースのランキング最適化(GRO)を導入する。
GROは、攻撃者の代理モデルの損失を最大化しながら、保護対象モデルの損失を最小限にすることを目的としている。
その結果,モデル抽出攻撃に対するGROの防御効果は良好であった。
論文 参考訳(メタデータ) (2023-10-25T03:30:42Z) - Scalable Membership Inference Attacks via Quantile Regression [35.33158339354343]
メンバーシップ推論攻撃は、トレーニングで特定の例が使用されたかどうかに関わらず、トレーニングされたモデルへのブラックボックスアクセスを使用して決定するように設計されている。
本稿では,トレーニングに使用されていない点に対する攻撃下でモデルによって誘導される信頼度スコアの分布に基づいて,量子回帰に基づく新たな攻撃方法を提案する。
論文 参考訳(メタデータ) (2023-07-07T16:07:00Z) - Membership Inference Attacks by Exploiting Loss Trajectory [19.900473800648243]
そこで本研究では,対象モデルのトレーニングプロセス全体から,メンバシップ情報を利用する新たな攻撃手法であるシステムを提案する。
我々の攻撃は、既存の方法よりも0.1%低い偽陽性率で、少なくとも6$times$高い真陽性率を達成する。
論文 参考訳(メタデータ) (2022-08-31T16:02:26Z) - An Efficient Subpopulation-based Membership Inference Attack [11.172550334631921]
我々は、数百のシャドウモデルを訓練する必要のない、根本的に異なるMIアタックアプローチを導入する。
我々は、トレーニングコストを大幅に削減しつつ、最先端の会員推定精度を達成する。
論文 参考訳(メタデータ) (2022-03-04T00:52:06Z) - Towards A Conceptually Simple Defensive Approach for Few-shot
classifiers Against Adversarial Support Samples [107.38834819682315]
本研究は,数発の分類器を敵攻撃から守るための概念的簡便なアプローチについて検討する。
本稿では,自己相似性とフィルタリングの概念を用いた簡易な攻撃非依存検出法を提案する。
ミニイメージネット(MI)とCUBデータセットの攻撃検出性能は良好である。
論文 参考訳(メタデータ) (2021-10-24T05:46:03Z) - "What's in the box?!": Deflecting Adversarial Attacks by Randomly
Deploying Adversarially-Disjoint Models [71.91835408379602]
敵の例は長い間、機械学習モデルに対する真の脅威と考えられてきた。
我々は、従来のホワイトボックスやブラックボックスの脅威モデルを超えた、配置ベースの防衛パラダイムを提案する。
論文 参考訳(メタデータ) (2021-02-09T20:07:13Z) - Two Sides of the Same Coin: White-box and Black-box Attacks for Transfer
Learning [60.784641458579124]
ホワイトボックスFGSM攻撃によるモデルロバスト性を効果的に向上することを示す。
また,移動学習モデルに対するブラックボックス攻撃手法を提案する。
ホワイトボックス攻撃とブラックボックス攻撃の双方の効果を系統的に評価するために,ソースモデルからターゲットモデルへの変換可能性の評価手法を提案する。
論文 参考訳(メタデータ) (2020-08-25T15:04:32Z) - Leveraging Siamese Networks for One-Shot Intrusion Detection Model [0.0]
侵入検知システムを強化するための機械学習(ML)が重要な研究対象となっている。
モデルの再トレーニングは、十分な量のデータを取得するのに必要なタイムウインドウのために、ネットワークが攻撃を受けやすいようにする。
ここでは、「ワンショットラーニング」と呼ばれる補完的なアプローチで、新しい攻撃クラスを識別するために、新しい攻撃クラスの限られた例を用いる。
Siamese Networkは、機能ではなく、ペアの類似性に基づいてクラスを区別するように訓練されており、新しい、以前は目に見えない攻撃を識別することができる。
論文 参考訳(メタデータ) (2020-06-27T11:40:01Z) - Boosting Black-Box Attack with Partially Transferred Conditional
Adversarial Distribution [83.02632136860976]
深層ニューラルネットワーク(DNN)に対するブラックボックス攻撃の研究
我々は, 代理バイアスに対して頑健な, 対向移動可能性の新たなメカニズムを開発する。
ベンチマークデータセットの実験と実世界のAPIに対する攻撃は、提案手法の優れた攻撃性能を示す。
論文 参考訳(メタデータ) (2020-06-15T16:45:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。