論文の概要: Membership Inference Attacks on Diffusion Models via Quantile Regression
- arxiv url: http://arxiv.org/abs/2312.05140v1
- Date: Fri, 8 Dec 2023 16:21:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-11 14:51:15.529869
- Title: Membership Inference Attacks on Diffusion Models via Quantile Regression
- Title(参考訳): 分位回帰による拡散モデルにおけるメンバーシップ推論攻撃
- Authors: Shuai Tang, Zhiwei Steven Wu, Sergul Aydore, Michael Kearns, Aaron
Roth
- Abstract要約: 我々は,家族関係推論(MI)攻撃による拡散モデルのプライバシー上の脆弱性を実証する。
提案したMI攻撃は、トレーニングに使用されていない例における再構成損失の分布を予測(定量化)する量子レグレッションモデルを学習する。
我々の攻撃は従来の最先端攻撃よりも優れており、計算コストは著しく低い。
- 参考スコア(独自算出の注目度): 30.30033625685376
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, diffusion models have become popular tools for image synthesis
because of their high-quality outputs. However, like other large-scale models,
they may leak private information about their training data. Here, we
demonstrate a privacy vulnerability of diffusion models through a
\emph{membership inference (MI) attack}, which aims to identify whether a
target example belongs to the training set when given the trained diffusion
model. Our proposed MI attack learns quantile regression models that predict (a
quantile of) the distribution of reconstruction loss on examples not used in
training. This allows us to define a granular hypothesis test for determining
the membership of a point in the training set, based on thresholding the
reconstruction loss of that point using a custom threshold tailored to the
example. We also provide a simple bootstrap technique that takes a majority
membership prediction over ``a bag of weak attackers'' which improves the
accuracy over individual quantile regression models. We show that our attack
outperforms the prior state-of-the-art attack while being substantially less
computationally expensive -- prior attacks required training multiple ``shadow
models'' with the same architecture as the model under attack, whereas our
attack requires training only much smaller models.
- Abstract(参考訳): 近年,高画質な画像合成のための拡散モデルが普及している。
しかし、他の大規模モデルと同様に、トレーニングデータに関するプライベート情報をリークする可能性がある。
ここでは、訓練された拡散モデルが与えられた場合、対象のサンプルがトレーニングセットに属するかどうかを特定することを目的とした、emph{membership inference (MI) attack}による拡散モデルのプライバシー上の脆弱性を示す。
提案するmi攻撃は,トレーニングで使用されていない例に対する再構成損失の分布を予測する(質的)質的回帰モデルを学ぶ。
これにより、例に合わせたカスタムしきい値を用いて、その点の復元損失のしきい値に基づいて、トレーニングセット内の点のメンバシップを決定するための粒度の仮説テストを定義することができる。
また,'a bag of weak attackers' よりも多数メンバシップを予測できる単純なブートストラップ手法も提供し,個々の量子回帰モデルの精度を向上させる。
以前の攻撃では、攻撃対象のモデルと同じアーキテクチャで複数の‘シャドウモデル’をトレーニングする必要がありましたが、我々の攻撃では、より小さなモデルのみをトレーニングする必要があります。
関連論文リスト
- Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
本稿では,強化学習に基づく学習可能なデータ拡張手法であるAutoTSAugを紹介する。
限界サンプルを学習可能なポリシーで強化することにより、AutoTSAugは予測性能を大幅に改善する。
論文 参考訳(メタデータ) (2024-09-10T07:34:19Z) - Model Inversion Attacks Through Target-Specific Conditional Diffusion Models [54.69008212790426]
モデル反転攻撃(MIA)は、ターゲット分類器のトレーニングセットからプライベートイメージを再構築することを目的としており、それによってAIアプリケーションにおけるプライバシー上の懸念が高まる。
従来のGANベースのMIAは、GANの固有の欠陥と潜伏空間における最適化の偏りにより、劣った遺伝子的忠実度に悩まされる傾向にある。
これらの問題を緩和するために拡散モデル反転(Diff-MI)攻撃を提案する。
論文 参考訳(メタデータ) (2024-07-16T06:38:49Z) - Scalable Membership Inference Attacks via Quantile Regression [35.33158339354343]
メンバーシップ推論攻撃は、トレーニングで特定の例が使用されたかどうかに関わらず、トレーニングされたモデルへのブラックボックスアクセスを使用して決定するように設計されている。
本稿では,トレーニングに使用されていない点に対する攻撃下でモデルによって誘導される信頼度スコアの分布に基づいて,量子回帰に基づく新たな攻撃方法を提案する。
論文 参考訳(メタデータ) (2023-07-07T16:07:00Z) - Boosting Model Inversion Attacks with Adversarial Examples [26.904051413441316]
ブラックボックス設定において、より高い攻撃精度を達成できる学習ベースモデル反転攻撃のための新しい訓練パラダイムを提案する。
まず,攻撃モデルの学習過程を,意味的損失関数を追加して規則化する。
第2に、学習データに逆例を注入し、クラス関連部の多様性を高める。
論文 参考訳(メタデータ) (2023-06-24T13:40:58Z) - An Efficient Subpopulation-based Membership Inference Attack [11.172550334631921]
我々は、数百のシャドウモデルを訓練する必要のない、根本的に異なるMIアタックアプローチを導入する。
我々は、トレーニングコストを大幅に削減しつつ、最先端の会員推定精度を達成する。
論文 参考訳(メタデータ) (2022-03-04T00:52:06Z) - Reconstructing Training Data with Informed Adversaries [30.138217209991826]
機械学習モデルへのアクセスを考えると、敵はモデルのトレーニングデータを再構築できるだろうか?
本研究は、この疑問を、学習データポイントの全てを知っている強力な情報提供者のレンズから研究する。
この厳密な脅威モデルにおいて、残りのデータポイントを再構築することは可能であることを示す。
論文 参考訳(メタデータ) (2022-01-13T09:19:25Z) - "What's in the box?!": Deflecting Adversarial Attacks by Randomly
Deploying Adversarially-Disjoint Models [71.91835408379602]
敵の例は長い間、機械学習モデルに対する真の脅威と考えられてきた。
我々は、従来のホワイトボックスやブラックボックスの脅威モデルを超えた、配置ベースの防衛パラダイムを提案する。
論文 参考訳(メタデータ) (2021-02-09T20:07:13Z) - Knowledge-Enriched Distributional Model Inversion Attacks [49.43828150561947]
モデルインバージョン(MI)攻撃は、モデルパラメータからトレーニングデータを再構成することを目的としている。
本稿では,パブリックデータからプライベートモデルに対する攻撃を行うのに役立つ知識を抽出する,新しい反転型GANを提案する。
実験の結果,これらの手法を組み合わせることで,最先端MI攻撃の成功率を150%向上させることができることがわかった。
論文 参考訳(メタデータ) (2020-10-08T16:20:48Z) - Leveraging Siamese Networks for One-Shot Intrusion Detection Model [0.0]
侵入検知システムを強化するための機械学習(ML)が重要な研究対象となっている。
モデルの再トレーニングは、十分な量のデータを取得するのに必要なタイムウインドウのために、ネットワークが攻撃を受けやすいようにする。
ここでは、「ワンショットラーニング」と呼ばれる補完的なアプローチで、新しい攻撃クラスを識別するために、新しい攻撃クラスの限られた例を用いる。
Siamese Networkは、機能ではなく、ペアの類似性に基づいてクラスを区別するように訓練されており、新しい、以前は目に見えない攻撃を識別することができる。
論文 参考訳(メタデータ) (2020-06-27T11:40:01Z) - Adversarial Imitation Attack [63.76805962712481]
現実的な敵攻撃は、攻撃されたモデルの知識をできるだけ少なくする必要がある。
現在の代替攻撃では、敵の例を生成するために事前訓練されたモデルが必要である。
本研究では,新たな敵模倣攻撃を提案する。
論文 参考訳(メタデータ) (2020-03-28T10:02:49Z) - DaST: Data-free Substitute Training for Adversarial Attacks [55.76371274622313]
本研究では,敵対的ブラックボックス攻撃の代替モデルを得るためのデータフリー代替訓練法(DaST)を提案する。
これを実現するため、DaSTは特別に設計されたGANを用いて代替モデルを訓練する。
実験では、代替モデルがベースラインモデルと比較して競争性能を発揮することを示した。
論文 参考訳(メタデータ) (2020-03-28T04:28:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。