論文の概要: InstantFT: An FPGA-Based Runtime Subsecond Fine-tuning of CNN Models
- arxiv url: http://arxiv.org/abs/2506.06505v1
- Date: Fri, 06 Jun 2025 20:01:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-10 16:33:10.299897
- Title: InstantFT: An FPGA-Based Runtime Subsecond Fine-tuning of CNN Models
- Title(参考訳): InstantFT:CNNモデルのFPGAベースランタイムサブ秒微調整
- Authors: Keisuke Sugiura, Hiroki Matsutani,
- Abstract要約: FPGAを用いたIoTデバイス上での超高速CNN微調整手法を提案する。
コンセプトドリフトを用いたデータセット実験により、InstantFTは既存のローランド適応(LoRA)よりも17.4倍高速で訓練済みのCNNを微調整できることが示された。
我々のFPGAベースのInstantFTは、微調整時間をわずか0.36秒に短縮し、エネルギー効率を16.3倍に改善し、非定常データ分布へのCNNのオンザフライ適応を可能にする。
- 参考スコア(独自算出の注目度): 0.9444784653236158
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training deep neural networks (DNNs) requires significantly more computation and memory than inference, making runtime adaptation of DNNs challenging on resource-limited IoT platforms. We propose InstantFT, an FPGA-based method for ultra-fast CNN fine-tuning on IoT devices, by optimizing the forward and backward computations in parameter-efficient fine-tuning (PEFT). Experiments on datasets with concept drift demonstrate that InstantFT fine-tunes a pre-trained CNN 17.4x faster than existing Low-Rank Adaptation (LoRA)-based approaches, while achieving comparable accuracy. Our FPGA-based InstantFT reduces the fine-tuning time to just 0.36s and improves energy-efficiency by 16.3x, enabling on-the-fly adaptation of CNNs to non-stationary data distributions.
- Abstract(参考訳): 深層ニューラルネットワーク(DNN)のトレーニングには、推論よりもはるかに多くの計算とメモリが必要だ。
パラメータ効率のよい微調整(PEFT)における前方および後方の計算を最適化することにより,IoTデバイス上で超高速CNN微調整を行うFPGAベースのInstantFTを提案する。
コンセプトドリフトを用いたデータセットの実験では、InstantFTは既存のローランド適応(LoRA)ベースのアプローチよりも17.4倍高速で、精度は同等である。
我々のFPGAベースのInstantFTは、微調整時間をわずか0.36秒に短縮し、エネルギー効率を16.3倍に改善し、非定常データ分布へのCNNのオンザフライ適応を可能にする。
関連論文リスト
- SCONNA: A Stochastic Computing Based Optical Accelerator for Ultra-Fast,
Energy-Efficient Inference of Integer-Quantized CNNs [0.0]
CNN推論タスクは、一般的にベクトルドット生成(VDP)操作に変換される畳み込み演算を使用する。
いくつかのフォトニックマイクロリング共振器(MRR)ベースのハードウェアアーキテクチャが整数量子化CNNを高速化するために提案されている。
既存のフォトニックMRRベースのアナログ加速器は、達成可能な入力/重み付け精度とVDP操作サイズとの間に非常に強いトレードオフを示す。
論文 参考訳(メタデータ) (2023-02-14T13:35:15Z) - Attention-based Feature Compression for CNN Inference Offloading in Edge
Computing [93.67044879636093]
本稿では,デバイスエッジ共振器におけるCNN推論の計算負荷について検討する。
エンドデバイスにおける効率的な特徴抽出のための新しいオートエンコーダベースのCNNアーキテクチャ(AECNN)を提案する。
実験の結果、AECNNは中間データを約4%の精度で256倍圧縮できることがわかった。
論文 参考訳(メタデータ) (2022-11-24T18:10:01Z) - Receptive Field-based Segmentation for Distributed CNN Inference
Acceleration in Collaborative Edge Computing [93.67044879636093]
協調エッジコンピューティングネットワークにおける分散畳み込みニューラルネットワーク(CNN)を用いた推論高速化について検討する。
我々は,CNNモデルを複数の畳み込み層に分割するために,融合層並列化を用いた新しい協調エッジコンピューティングを提案する。
論文 参考訳(メタデータ) (2022-07-22T18:38:11Z) - Benchmarking Test-Time Unsupervised Deep Neural Network Adaptation on
Edge Devices [19.335535517714703]
エッジへの展開後のディープニューラルネットワーク(DNN)の予測精度は、新しいデータの分布の変化によって、時間とともに低下する可能性がある。
バッチ正規化パラメータを再調整することにより、ノイズデータに対するモデルの予測精度を向上させるため、近年の予測時間非教師なしDNN適応技術が導入されている。
本論文は, 各種エッジデバイスの性能とエネルギーを定量化するために, この種の技術に関する総合的な研究を初めて行ったものである。
論文 参考訳(メタデータ) (2022-03-21T19:10:40Z) - Towards Enabling Dynamic Convolution Neural Network Inference for Edge
Intelligence [0.0]
エッジインテリジェンスの最近の進歩は、スループットを高め、レイテンシを低減するために、エッジネットワーク上のCNN推論を必要とする。
柔軟性を得るためには、さまざまなモバイルデバイスに対する動的パラメータ割り当ては、事前に定義されたか、オンザフライで定義されたCNNアーキテクチャを実装する必要がある。
本稿では,スケーラブルで動的に分散したCNN推論を高速に設計するためのライブラリベースのアプローチを提案する。
論文 参考訳(メタデータ) (2022-02-18T22:33:42Z) - EF-Train: Enable Efficient On-device CNN Training on FPGA Through Data
Reshaping for Online Adaptation or Personalization [11.44696439060875]
EF-Trainは、チャネルレベルの並列性に基づく畳み込みカーネルを統一した、効率的なDNNトレーニングアクセラレータである。
リソース制限された低消費電力エッジレベルFPGAのエンドツーエンドトレーニングを実現することができる。
我々の設計ではスループットとエネルギー効率の点で46.99GFLOPSと6.09GFLOPS/Wを実現している。
論文 参考訳(メタデータ) (2022-02-18T18:27:42Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Learning to Solve the AC-OPF using Sensitivity-Informed Deep Neural
Networks [52.32646357164739]
最適な電力フロー(ACOPF)のソリューションを解決するために、ディープニューラルネットワーク(DNN)を提案します。
提案されたSIDNNは、幅広いOPFスキームと互換性がある。
他のLearning-to-OPFスキームとシームレスに統合できる。
論文 参考訳(メタデータ) (2021-03-27T00:45:23Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
メタラーニング(MTL)アプローチを用いて訓練されたDNNベースのOPF予測器を提案する。
開発したOPF予測器はベンチマークIEEEバスシステムを用いてシミュレーションにより検証される。
論文 参考訳(メタデータ) (2020-12-21T17:39:51Z) - Systolic-CNN: An OpenCL-defined Scalable Run-time-flexible FPGA
Accelerator Architecture for Accelerating Convolutional Neural Network
Inference in Cloud/Edge Computing [8.826181951806928]
Systolic-CNNはOpenCLで定義されたスケーラブルでランタイムフレキシブルなFPGAアクセラレータアーキテクチャである。
Systolic-CNNは、マルチテナントクラウド/エッジコンピューティングにおける様々な畳み込みニューラルネットワーク(CNN)の推論を高速化するために最適化されている。
論文 参考訳(メタデータ) (2020-12-06T03:53:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。