Private GPTs for LLM-driven testing in software development and machine learning
- URL: http://arxiv.org/abs/2506.06509v2
- Date: Thu, 31 Jul 2025 18:44:42 GMT
- Title: Private GPTs for LLM-driven testing in software development and machine learning
- Authors: Jakub Jagielski, Consuelo Rojas, Markus Abel,
- Abstract summary: We examine the capability of private GPTs to automatically generate executable test code based on requirements.<n>We use acceptance criteria as input, formulated as part of epics, or stories, which are typically used in modern development processes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this contribution, we examine the capability of private GPTs to automatically generate executable test code based on requirements. More specifically, we use acceptance criteria as input, formulated as part of epics, or stories, which are typically used in modern development processes. This gives product owners, or business intelligence, respectively, a way to directly produce testable criteria through the use of LLMs. We explore the quality of the so-produced tests in two ways: i) directly by letting the LLM generate code from requirements, ii) through an intermediate step using Gherkin syntax. As a result, it turns out that the two-step procedure yields better results -where we define better in terms of human readability and best coding practices, i.e. lines of code and use of additional libraries typically used in testing. Concretely, we evaluate prompt effectiveness across two scenarios: a simple "Hello World" program and a digit classification model, showing that structured prompts lead to higher-quality test outputs.
Related papers
- IFEvalCode: Controlled Code Generation [69.28317223249358]
The paper introduces forward and backward constraints generation to improve the instruction-following capabilities of Code LLMs.<n>The authors present IFEvalCode, a multilingual benchmark comprising 1.6K test samples across seven programming languages.
arXiv Detail & Related papers (2025-07-30T08:08:48Z) - iPanda: An LLM-based Agent for Automated Conformance Testing of Communication Protocols [11.749977502129898]
Large Language Models (LLMs) have demonstrated impressive text comprehension and code generation abilities.<n>We propose iPanda, the first framework that leverages LLMs to automate protocol conformance testing.<n>Experiments on various protocols show that iPanda significantly outperforms pure LLM-based approaches.
arXiv Detail & Related papers (2025-07-01T02:27:44Z) - Training Language Models to Generate Quality Code with Program Analysis Feedback [66.0854002147103]
Code generation with large language models (LLMs) is increasingly adopted in production but fails to ensure code quality.<n>We propose REAL, a reinforcement learning framework that incentivizes LLMs to generate production-quality code.
arXiv Detail & Related papers (2025-05-28T17:57:47Z) - Tests as Prompt: A Test-Driven-Development Benchmark for LLM Code Generation [1.7268889851975326]
We introduce WebApp1K, a novel benchmark for evaluating large language models (LLMs) in test-driven development (TDD) tasks.<n>Unlike traditional approaches relying on natural language prompts, our benchmark emphasizes the ability of LLMs to interpret and implement functionality directly from test cases.
arXiv Detail & Related papers (2025-05-13T23:47:12Z) - Test code generation at Ericsson using Program Analysis Augmented Fine Tuned LLMs [1.4798334915529776]
We describe test code generation using Large Language Models (LLMs) in Ericsson.<n>Our input is a test step in natural language (English) and our output is code (Java) which accomplishes the test step.
arXiv Detail & Related papers (2025-04-23T18:18:18Z) - LlamaRestTest: Effective REST API Testing with Small Language Models [50.058600784556816]
We present LlamaRestTest, a novel approach that employs two custom Large Language Models (LLMs) to generate realistic test inputs.<n>We evaluate it against several state-of-the-art REST API testing tools, including RESTGPT, a GPT-powered specification-enhancement tool.<n>Our study shows that small language models can perform as well as, or better than, large language models in REST API testing.
arXiv Detail & Related papers (2025-01-15T05:51:20Z) - Improving the Readability of Automatically Generated Tests using Large Language Models [7.7149881834358345]
We propose to combine the effectiveness of search-based generators with the readability of LLM generated tests.<n>Our approach focuses on improving test and variable names produced by search-based tools, while keeping their semantics unchanged.
arXiv Detail & Related papers (2024-12-25T09:08:53Z) - Commit0: Library Generation from Scratch [77.38414688148006]
Commit0 is a benchmark that challenges AI agents to write libraries from scratch.<n>Agents are provided with a specification document outlining the library's API as well as a suite of interactive unit tests.<n> Commit0 also offers an interactive environment where models receive static analysis and execution feedback on the code they generate.
arXiv Detail & Related papers (2024-12-02T18:11:30Z) - ASTER: Natural and Multi-language Unit Test Generation with LLMs [6.259245181881262]
We describe a generic pipeline that incorporates static analysis to guide LLMs in generating compilable and high-coverage test cases.<n>We conduct an empirical study to assess the quality of the generated tests in terms of code coverage and test naturalness.
arXiv Detail & Related papers (2024-09-04T21:46:18Z) - Benchmarking Uncertainty Quantification Methods for Large Language Models with LM-Polygraph [83.90988015005934]
Uncertainty quantification is a key element of machine learning applications.<n>We introduce a novel benchmark that implements a collection of state-of-the-art UQ baselines.<n>We conduct a large-scale empirical investigation of UQ and normalization techniques across eleven tasks, identifying the most effective approaches.
arXiv Detail & Related papers (2024-06-21T20:06:31Z) - Aligning Language Models with Demonstrated Feedback [58.834937450242975]
Demonstration ITerated Task Optimization (DITTO) directly aligns language model outputs to a user's demonstrated behaviors.<n>We evaluate DITTO's ability to learn fine-grained style and task alignment across domains such as news articles, emails, and blog posts.
arXiv Detail & Related papers (2024-06-02T23:13:56Z) - Automating REST API Postman Test Cases Using LLM [0.0]
This research paper is dedicated to the exploration and implementation of an automated approach to generate test cases using Large Language Models.
The methodology integrates the use of Open AI to enhance the efficiency and effectiveness of test case generation.
The model that is developed during the research is trained using manually collected postman test cases or instances for various Rest APIs.
arXiv Detail & Related papers (2024-04-16T15:53:41Z) - Test-Driven Development for Code Generation [0.850206009406913]
Large Language Models (LLMs) have demonstrated significant capabilities in generating code snippets directly from problem statements.
This paper investigates if and how Test-Driven Development (TDD) can be incorporated into AI-assisted code-generation processes.
arXiv Detail & Related papers (2024-02-21T04:10:12Z) - Guiding Large Language Models via Directional Stimulus Prompting [114.84930073977672]
We introduce Directional Stimulus Prompting, a novel framework for guiding black-box large language models (LLMs) toward specific desired outputs.
Instead of directly adjusting LLMs, our method employs a small tunable policy model to generate an auxiliary directional stimulus prompt for each input instance.
arXiv Detail & Related papers (2023-02-22T17:44:15Z) - Interactive Code Generation via Test-Driven User-Intent Formalization [60.90035204567797]
Large language models (LLMs) produce code from informal natural language (NL) intent.
It is hard to define a notion of correctness since natural language can be ambiguous and lacks a formal semantics.
We describe a language-agnostic abstract algorithm and a concrete implementation TiCoder.
arXiv Detail & Related papers (2022-08-11T17:41:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.