論文の概要: Hierarchical and Collaborative LLM-Based Control for Multi-UAV Motion and Communication in Integrated Terrestrial and Non-Terrestrial Networks
- arxiv url: http://arxiv.org/abs/2506.06532v1
- Date: Fri, 06 Jun 2025 20:59:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-10 16:33:10.311034
- Title: Hierarchical and Collaborative LLM-Based Control for Multi-UAV Motion and Communication in Integrated Terrestrial and Non-Terrestrial Networks
- Title(参考訳): 統合地上・非地上ネットワークにおける多UAV動作と通信のための階層的・協調的LLM制御
- Authors: Zijiang Yan, Hao Zhou, Jianhua Pei, Hina Tabassum,
- Abstract要約: 本研究は,複数のUAVの連立動作と通信制御を地球外ネットワークと非地球外ネットワークで行うことを目的としたものである。
大規模言語モデル(LLM)に基づく新しい階層的協調手法を提案する。
実験により,提案手法は, システム報酬の向上, 運用コストの低減, ベースライン手法と比較してUAV衝突率の大幅な低減を実現していることがわかった。
- 参考スコア(独自算出の注目度): 21.350819743855382
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unmanned aerial vehicles (UAVs) have been widely adopted in various real-world applications. However, the control and optimization of multi-UAV systems remain a significant challenge, particularly in dynamic and constrained environments. This work explores the joint motion and communication control of multiple UAVs operating within integrated terrestrial and non-terrestrial networks that include high-altitude platform stations (HAPS). Specifically, we consider an aerial highway scenario in which UAVs must accelerate, decelerate, and change lanes to avoid collisions and maintain overall traffic flow. Different from existing studies, we propose a novel hierarchical and collaborative method based on large language models (LLMs). In our approach, an LLM deployed on the HAPS performs UAV access control, while another LLM onboard each UAV handles motion planning and control. This LLM-based framework leverages the rich knowledge embedded in pre-trained models to enable both high-level strategic planning and low-level tactical decisions. This knowledge-driven paradigm holds great potential for the development of next-generation 3D aerial highway systems. Experimental results demonstrate that our proposed collaborative LLM-based method achieves higher system rewards, lower operational costs, and significantly reduced UAV collision rates compared to baseline approaches.
- Abstract(参考訳): 無人航空機(UAV)は様々な現実世界の用途で広く採用されている。
しかし、特に動的で制約のある環境では、マルチUAVシステムの制御と最適化は重要な課題である。
本研究は、高高度プラットフォームステーション(HAPS)を含む統合地上・非地上ネットワーク内で動作する複数のUAVの協調動作と通信制御について検討する。
具体的には、UAVが衝突を避けるために車線を加速し、減速し、変更し、全体の交通の流れを維持するという、航空ハイウェイのシナリオについて考察する。
既存の研究とは違って,大規模言語モデル(LLM)に基づく新しい階層的協調手法を提案する。
提案手法では,HAPS 上に展開された LLM が UAV アクセス制御を行い,各 UAV 上の LLM が 動作計画と制御を行う。
このLLMベースのフレームワークは、事前訓練されたモデルに埋め込まれた豊富な知識を活用し、高いレベルの戦略的計画と低レベルの戦術的決定の両方を可能にする。
この知識駆動のパラダイムは、次世代の3D航空ハイウェイシステムの開発に大きな可能性を秘めている。
実験により,提案手法は, システム報酬の向上, 運用コストの低減, ベースライン手法と比較してUAV衝突率の大幅な低減を実現していることがわかった。
関連論文リスト
- Navigating Motion Agents in Dynamic and Cluttered Environments through LLM Reasoning [69.5875073447454]
本稿では,大規模言語モデル(LLM)によって強化された動作エージェントを,動的・乱雑な環境における自律的なナビゲーションに向けて前進させる。
トレーニング不要なフレームワークは、マルチエージェント調整、クローズドループ計画、動的障害物回避を、リトレーニングや微調整なしでサポートしています。
論文 参考訳(メタデータ) (2025-03-10T13:39:09Z) - Aerial Reliable Collaborative Communications for Terrestrial Mobile Users via Evolutionary Multi-Objective Deep Reinforcement Learning [59.660724802286865]
無人航空機(UAV)は、地上通信を改善するための航空基地局(BS)として登場した。
この作業では、UAV対応仮想アンテナアレイによる協調ビームフォーミングを使用して、UAVから地上モバイルユーザへの伝送性能を向上させる。
論文 参考訳(メタデータ) (2025-02-09T09:15:47Z) - Low-altitude Friendly-Jamming for Satellite-Maritime Communications via Generative AI-enabled Deep Reinforcement Learning [72.72954660774002]
低地球軌道(LEO)衛星は、海上無線通信で広範囲にわたるデータ通信を支援するために使用できる。
LEO衛星を広範囲にカバーし、チャネルの開放性と組み合わせることで、通信プロセスはセキュリティ上のリスクに悩まされる可能性がある。
本稿では無人航空機による低高度衛星通信システムLEOについて述べる。
論文 参考訳(メタデータ) (2025-01-26T10:13:51Z) - UAVs Meet LLMs: Overviews and Perspectives Toward Agentic Low-Altitude Mobility [33.73170899086857]
無人航空機(UAV)に代表される低高度機動性は、様々な領域に変革をもたらす。
本稿では,大規模言語モデル(LLM)とUAVの統合について検討する。
UAVとLLMが収束する主要なタスクとアプリケーションシナリオを分類し分析する。
論文 参考訳(メタデータ) (2025-01-04T17:32:12Z) - Integrating Large Language Models for UAV Control in Simulated Environments: A Modular Interaction Approach [0.3495246564946556]
本研究では,UAV制御における大規模言語モデルの適用について検討する。
UAVが自然言語コマンドを解釈し、応答できるようにすることで、LLMはUAVの制御と使用を簡素化する。
本稿では,自律的な意思決定,動的なミッション計画,状況認識の向上,安全プロトコルの改善など,LCMがUAV技術に影響を与えるいくつかの重要な領域について論じる。
論文 参考訳(メタデータ) (2024-10-23T06:56:53Z) - Multi-UAV Multi-RIS QoS-Aware Aerial Communication Systems using DRL and PSO [34.951735976771765]
無人航空機(UAV)は、地上の利用者に無線サービスを提供する学術・産業の研究者の注目を集めている。
UAVの限られたリソースは、そのようなアプリケーションにUAVを採用する上での課題を引き起こす可能性がある。
システムモデルでは,地域をナビゲートするUAVスワムを考慮し,RISをサポートした地上ユーザへの無線通信により,UAVのカバレッジを向上させる。
論文 参考訳(メタデータ) (2024-06-16T17:53:56Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
本稿では,UAVを用いた協調ビームフォーミング多目的最適化問題 (UCBMOP) を定式化し,UAVの伝送速度を最大化し,全UAVのエネルギー消費を最小化する。
ヘテロジニアス・エージェント・信頼領域ポリシー最適化(HATRPO)を基本フレームワークとし,改良されたHATRPOアルゴリズム,すなわちHATRPO-UCBを提案する。
論文 参考訳(メタデータ) (2024-04-11T03:19:22Z) - Joint Optimization of Deployment and Trajectory in UAV and IRS-Assisted
IoT Data Collection System [25.32139119893323]
無人航空機(UAV)は多くのモノのインターネット(IoT)システムに適用できる。
UAV-IoT無線チャネルは、時には木や高層建築物によってブロックされることがある。
本稿では,UAVの展開と軌道を最適化することで,システムのエネルギー消費を最小化することを目的とする。
論文 参考訳(メタデータ) (2022-10-27T06:27:40Z) - Efficient UAV Trajectory-Planning using Economic Reinforcement Learning [65.91405908268662]
UAV間でタスクを分散するための経済取引に触発された新しい強化学習アルゴリズムであるREPlannerを紹介します。
エージェントが協力し、リソースを競うことができるマルチエージェント経済ゲームとして、パス計画問題を策定します。
UAV協力によるタスク分布の計算を行うため、Swarmサイズの変化に対して非常に耐性が高い。
論文 参考訳(メタデータ) (2021-03-03T20:54:19Z) - Multi-Agent Deep Reinforcement Learning Based Trajectory Planning for
Multi-UAV Assisted Mobile Edge Computing [99.27205900403578]
無人航空機(UAV)支援移動エッジコンピューティング(MEC)フレームワークを提案する。
我々は,全ユーザ機器(UE)の地理的公正性と,各UAVのUE負荷の公平性を共同で最適化することを目的としている。
提案手法は他の従来のアルゴリズムよりもかなり性能が高いことを示す。
論文 参考訳(メタデータ) (2020-09-23T17:44:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。