論文の概要: Navigating Motion Agents in Dynamic and Cluttered Environments through LLM Reasoning
- arxiv url: http://arxiv.org/abs/2503.07323v2
- Date: Thu, 05 Jun 2025 12:17:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-06 16:56:39.476545
- Title: Navigating Motion Agents in Dynamic and Cluttered Environments through LLM Reasoning
- Title(参考訳): LLM推論による動的・クラッタ環境における運動エージェントの探索
- Authors: Yubo Zhao, Qi Wu, Yifan Wang, Yu-Wing Tai, Chi-Keung Tang,
- Abstract要約: 本稿では,大規模言語モデル(LLM)によって強化された動作エージェントを,動的・乱雑な環境における自律的なナビゲーションに向けて前進させる。
トレーニング不要なフレームワークは、マルチエージェント調整、クローズドループ計画、動的障害物回避を、リトレーニングや微調整なしでサポートしています。
- 参考スコア(独自算出の注目度): 69.5875073447454
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper advances motion agents empowered by large language models (LLMs) toward autonomous navigation in dynamic and cluttered environments, significantly surpassing first and recent seminal but limited studies on LLM's spatial reasoning, where movements are restricted in four directions in simple, static environments in the presence of only single agents much less multiple agents. Specifically, we investigate LLMs as spatial reasoners to overcome these limitations by uniformly encoding environments (e.g., real indoor floorplans), agents which can be dynamic obstacles and their paths as discrete tokens akin to language tokens. Our training-free framework supports multi-agent coordination, closed-loop replanning, and dynamic obstacle avoidance without retraining or fine-tuning. We show that LLMs can generalize across agents, tasks, and environments using only text-based interactions, opening new possibilities for semantically grounded, interactive navigation in both simulation and embodied systems.
- Abstract(参考訳): 本稿では,大規模言語モデル (LLM) による動的・乱雑な環境における自律的ナビゲーションのための運動エージェントを,LLMの空間的推論における第1次・第2次・第2次・第2次・第2次・第2次・第2次・第2次・第2次・第2次・第2次・第2次・第2次・第2次・第2次・第2次・第2次・第2次・第2次・第2次・第2次・第2次・第2次・第2次・第2次・第2次・第2次・第2次・第2次・第2次・第2次・第2次・第2次・第2次・第2次・第2次・第2次・第2次・第2次・第2次・第2次・第2次・第2次・第2次・第2次・第2次・第2次・第
具体的には,環境(例えば屋内のフロアプラン),動的障害となるエージェント,および言語トークンに似た離散トークンとしてのそれらの経路を均一に符号化することで,これらの制約を克服するための空間的推論器としてLLMについて検討する。
トレーニング不要なフレームワークは、マルチエージェント調整、クローズドループ計画、動的障害物回避をサポートし、リトレーニングや微調整は行わない。
LLMはテキストベースのインタラクションのみを用いてエージェント,タスク,環境をまたいだ汎用化を実現し,シミュレーションと組込みシステムの両方において,意味的基盤と対話的ナビゲーションの新たな可能性を開く。
関連論文リスト
- Exploring the Roles of Large Language Models in Reshaping Transportation Systems: A Survey, Framework, and Roadmap [51.198001060683296]
大型言語モデル(LLM)は、輸送上の課題に対処するための変革的な可能性を提供する。
LLM4TRは,交通におけるLSMの役割を体系的に分類する概念的枠組みである。
それぞれの役割について,交通予測や自律運転,安全分析,都市移動最適化など,さまざまな応用について検討した。
論文 参考訳(メタデータ) (2025-03-27T11:56:27Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
大規模言語モデル(LLM)は、様々なタスクにまたがる顕著な機能を示している。
しかし、彼らは多段階の意思決定と環境フィードバックを必要とする問題に苦戦している。
人間のアノテーションを使わずに環境から報酬モデルを自動的に学習できるフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-17T18:49:25Z) - MALMM: Multi-Agent Large Language Models for Zero-Shot Robotics Manipulation [52.739500459903724]
大規模言語モデル(LLM)は、ロボティクスの操作やナビゲーションなど、さまざまな領域にまたがる優れた計画能力を示している。
特殊なLLMエージェント間で高レベル計画および低レベル制御コード生成を分散する新しいマルチエージェントLLMフレームワークを提案する。
長軸タスクを含む9つのRLBenchタスクに対するアプローチを評価し、ゼロショット環境でロボット操作を解く能力を実証した。
論文 参考訳(メタデータ) (2024-11-26T17:53:44Z) - LLM3:Large Language Model-based Task and Motion Planning with Motion Failure Reasoning [78.2390460278551]
従来のタスク・アンド・モーション・プランニング(TAMP)アプローチは、シンボル的タスク・プランニングと連続的なモーション・ジェネレーションを結びつける手作業によるインタフェースに依存している。
本稿では,ドメインに依存しないインターフェースを備えたLarge Language Model (LLM) ベースの TAMP フレームワーク LLM3 を提案する。
具体的には、事前学習したLLMの強力な推論と計画能力を活用して、シンボル的なアクションシーケンスを提案し、動作計画のための連続的なアクションパラメータを選択する。
論文 参考訳(メタデータ) (2024-03-18T08:03:47Z) - LgTS: Dynamic Task Sampling using LLM-generated sub-goals for
Reinforcement Learning Agents [10.936460061405157]
LgTS (LLM-Guided Teacher-Student Learning) を提案する。
提案手法では,提案したサブゴールを達成するための事前訓練されたポリシーも必要としない。
論文 参考訳(メタデータ) (2023-10-14T00:07:03Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous
Driving [87.1164964709168]
この作業では、複雑な自律運転シナリオの意思決定コンポーネントとして、Large Language Models(LLM)を採用している。
大規模実験により,提案手法は単車載タスクのベースラインアプローチを一貫して超えるだけでなく,複数車載コーディネートにおいても複雑な運転動作の処理にも有効であることが示された。
論文 参考訳(メタデータ) (2023-10-04T17:59:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。