Hierarchical and Collaborative LLM-Based Control for Multi-UAV Motion and Communication in Integrated Terrestrial and Non-Terrestrial Networks
- URL: http://arxiv.org/abs/2506.06532v1
- Date: Fri, 06 Jun 2025 20:59:52 GMT
- Title: Hierarchical and Collaborative LLM-Based Control for Multi-UAV Motion and Communication in Integrated Terrestrial and Non-Terrestrial Networks
- Authors: Zijiang Yan, Hao Zhou, Jianhua Pei, Hina Tabassum,
- Abstract summary: This work explores the joint motion and communication control of multiple UAVs operating within integrated terrestrial and non-terrestrial networks.<n>We propose a novel hierarchical and collaborative method based on large language models (LLMs)<n> Experimental results demonstrate that our proposed collaborative LLM-based method achieves higher system rewards, lower operational costs, and significantly reduced UAV collision rates compared to baseline approaches.
- Score: 21.350819743855382
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unmanned aerial vehicles (UAVs) have been widely adopted in various real-world applications. However, the control and optimization of multi-UAV systems remain a significant challenge, particularly in dynamic and constrained environments. This work explores the joint motion and communication control of multiple UAVs operating within integrated terrestrial and non-terrestrial networks that include high-altitude platform stations (HAPS). Specifically, we consider an aerial highway scenario in which UAVs must accelerate, decelerate, and change lanes to avoid collisions and maintain overall traffic flow. Different from existing studies, we propose a novel hierarchical and collaborative method based on large language models (LLMs). In our approach, an LLM deployed on the HAPS performs UAV access control, while another LLM onboard each UAV handles motion planning and control. This LLM-based framework leverages the rich knowledge embedded in pre-trained models to enable both high-level strategic planning and low-level tactical decisions. This knowledge-driven paradigm holds great potential for the development of next-generation 3D aerial highway systems. Experimental results demonstrate that our proposed collaborative LLM-based method achieves higher system rewards, lower operational costs, and significantly reduced UAV collision rates compared to baseline approaches.
Related papers
- LLM Meets the Sky: Heuristic Multi-Agent Reinforcement Learning for Secure Heterogeneous UAV Networks [57.27815890269697]
This work focuses on maximizing the secrecy rate in heterogeneous UAV networks (HetUAVNs) under energy constraints.<n>We introduce a Large Language Model (LLM)-guided multi-agent learning approach.<n>Results show that our method outperforms existing baselines in secrecy and energy efficiency.
arXiv Detail & Related papers (2025-07-23T04:22:57Z) - Navigating Motion Agents in Dynamic and Cluttered Environments through LLM Reasoning [69.5875073447454]
This paper advances motion agents empowered by large language models (LLMs) toward autonomous navigation in dynamic and cluttered environments.<n>Our training-free framework supports multi-agent coordination, closed-loop replanning, and dynamic obstacle avoidance without retraining or fine-tuning.
arXiv Detail & Related papers (2025-03-10T13:39:09Z) - Aerial Reliable Collaborative Communications for Terrestrial Mobile Users via Evolutionary Multi-Objective Deep Reinforcement Learning [59.660724802286865]
Unmanned aerial vehicles (UAVs) have emerged as the potential aerial base stations (BSs) to improve terrestrial communications.<n>This work employs collaborative beamforming through a UAV-enabled virtual antenna array to improve transmission performance from the UAV to terrestrial mobile users.
arXiv Detail & Related papers (2025-02-09T09:15:47Z) - Low-altitude Friendly-Jamming for Satellite-Maritime Communications via Generative AI-enabled Deep Reinforcement Learning [72.72954660774002]
Low Earth Orbit (LEO) satellites can be used to assist maritime wireless communications for data transmission across wide-ranging areas.<n>Extensive coverage of LEO satellites, combined with openness of channels, can cause the communication process to suffer from security risks.<n>This paper presents a low-altitude friendly-jamming LEO satellite-maritime communication system enabled by a unmanned aerial vehicle.
arXiv Detail & Related papers (2025-01-26T10:13:51Z) - UAVs Meet LLMs: Overviews and Perspectives Toward Agentic Low-Altitude Mobility [33.73170899086857]
Low-altitude mobility, exemplified by unmanned aerial vehicles (UAVs), has introduced transformative advancements across various domains.<n>This paper explores the integration of large language models (LLMs) and UAVs.<n>It categorizes and analyzes key tasks and application scenarios where UAVs and LLMs converge.
arXiv Detail & Related papers (2025-01-04T17:32:12Z) - Integrating Large Language Models for UAV Control in Simulated Environments: A Modular Interaction Approach [0.3495246564946556]
This study explores the application of Large Language Models in UAV control.
By enabling UAVs to interpret and respond to natural language commands, LLMs simplify the UAV control and usage.
The paper discusses several key areas where LLMs can impact UAV technology, including autonomous decision-making, dynamic mission planning, enhanced situational awareness, and improved safety protocols.
arXiv Detail & Related papers (2024-10-23T06:56:53Z) - Multi-UAV Multi-RIS QoS-Aware Aerial Communication Systems using DRL and PSO [34.951735976771765]
Unmanned Aerial Vehicles (UAVs) have attracted the attention of researchers in academia and industry for providing wireless services to ground users.
limited resources of UAVs can pose challenges for adopting UAVs for such applications.
Our system model considers a UAV swarm that navigates an area, providing wireless communication to ground users with RIS support to improve the coverage of the UAVs.
arXiv Detail & Related papers (2024-06-16T17:53:56Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
We formulate a UAV-enabled collaborative beamforming multi-objective optimization problem (UCBMOP) to maximize the transmission rate of the UVAA and minimize the energy consumption of all UAVs.
We use the heterogeneous-agent trust region policy optimization (HATRPO) as the basic framework, and then propose an improved HATRPO algorithm, namely HATRPO-UCB.
arXiv Detail & Related papers (2024-04-11T03:19:22Z) - Joint Optimization of Deployment and Trajectory in UAV and IRS-Assisted
IoT Data Collection System [25.32139119893323]
Unmanned aerial vehicles (UAVs) can be applied in many Internet of Things (IoT) systems.
The UAV-IoT wireless channels may be occasionally blocked by trees or high-rise buildings.
This article aims to minimize the energy consumption of the system by jointly optimizing the deployment and trajectory of the UAV.
arXiv Detail & Related papers (2022-10-27T06:27:40Z) - Efficient UAV Trajectory-Planning using Economic Reinforcement Learning [65.91405908268662]
We introduce REPlanner, a novel reinforcement learning algorithm inspired by economic transactions to distribute tasks between UAVs.
We formulate the path planning problem as a multi-agent economic game, where agents can cooperate and compete for resources.
As the system computes task distributions via UAV cooperation, it is highly resilient to any change in the swarm size.
arXiv Detail & Related papers (2021-03-03T20:54:19Z) - Multi-Agent Deep Reinforcement Learning Based Trajectory Planning for
Multi-UAV Assisted Mobile Edge Computing [99.27205900403578]
An unmanned aerial vehicle (UAV)-aided mobile edge computing (MEC) framework is proposed.
We aim to jointly optimize the geographical fairness among all the user equipments (UEs) and the fairness of each UAV's UE-load.
We show that our proposed solution has considerable performance over other traditional algorithms.
arXiv Detail & Related papers (2020-09-23T17:44:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.