BriefMe: A Legal NLP Benchmark for Assisting with Legal Briefs
- URL: http://arxiv.org/abs/2506.06619v3
- Date: Thu, 19 Jun 2025 06:35:29 GMT
- Title: BriefMe: A Legal NLP Benchmark for Assisting with Legal Briefs
- Authors: Jesse Woo, Fateme Hashemi Chaleshtori, Ana Marasović, Kenneth Marino,
- Abstract summary: Core part of legal work that has been under-explored in Legal NLP is the writing and editing of legal briefs.<n>We introduce BRIEFME, a new dataset focused on legal briefs.<n>It contains three tasks for language models to assist legal professionals in writing briefs: argument summarization, argument completion, and case retrieval.
- Score: 4.501619011158408
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A core part of legal work that has been under-explored in Legal NLP is the writing and editing of legal briefs. This requires not only a thorough understanding of the law of a jurisdiction, from judgments to statutes, but also the ability to make new arguments to try to expand the law in a new direction and make novel and creative arguments that are persuasive to judges. To capture and evaluate these legal skills in language models, we introduce BRIEFME, a new dataset focused on legal briefs. It contains three tasks for language models to assist legal professionals in writing briefs: argument summarization, argument completion, and case retrieval. In this work, we describe the creation of these tasks, analyze them, and show how current models perform. We see that today's large language models (LLMs) are already quite good at the summarization and guided completion tasks, even beating human-generated headings. Yet, they perform poorly on other tasks in our benchmark: realistic argument completion and retrieving relevant legal cases. We hope this dataset encourages more development in Legal NLP in ways that will specifically aid people in performing legal work.
Related papers
- LLMs for Legal Subsumption in German Employment Contracts [3.3916160303055567]
This study explores the use of Large Language Models and in-context learning to evaluate the legality of clauses in German employment contracts.<n>Our work evaluates the ability of different LLMs to classify clauses as "valid," "unfair," or "void" under three legal context variants.<n>Results show that full-text sources moderately improve performance, while examination guidelines significantly enhance recall for void clauses and weighted F1-Score, reaching 80%.
arXiv Detail & Related papers (2025-07-02T14:07:54Z) - AnnoCaseLaw: A Richly-Annotated Dataset For Benchmarking Explainable Legal Judgment Prediction [56.797874973414636]
AnnoCaseLaw is a first-of-its-kind dataset of 471 meticulously annotated U.S. Appeals Court negligence cases.<n>Our dataset lays the groundwork for more human-aligned, explainable Legal Judgment Prediction models.<n>Results demonstrate that LJP remains a formidable task, with application of legal precedent proving particularly difficult.
arXiv Detail & Related papers (2025-02-28T19:14:48Z) - Automating Legal Interpretation with LLMs: Retrieval, Generation, and Evaluation [27.345475442620746]
ATRIE consists of a legal concept interpreter and a legal concept interpretation evaluator.<n>The quality of our interpretations is comparable to those written by legal experts, with superior comprehensiveness and readability.<n>Although there remains a slight gap in accuracy, it can already assist legal practitioners in improving the efficiency of legal interpretation.
arXiv Detail & Related papers (2025-01-03T10:11:38Z) - Natural Language Processing for the Legal Domain: A Survey of Tasks, Datasets, Models, and Challenges [4.548047308860141]
This survey follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses framework, reviewing 154 studies, with a final selection of 133 after manual filtering.<n>It explores foundational concepts related to NLP in the legal domain, illustrating the unique aspects and challenges of processing legal texts.<n>We provide an overview of NLP tasks specific to legal text, such as Legal Document Summarisation, legal Named Entity Recognition, Legal Question Answering, Legal Argument Mining, Legal Text Classification, and Legal Judgement Prediction.
arXiv Detail & Related papers (2024-10-25T01:17:02Z) - DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
We introduce DELTA, a discriminative model designed for legal case retrieval.
We leverage shallow decoders to create information bottlenecks, aiming to enhance the representation ability.
Our approach can outperform existing state-of-the-art methods in legal case retrieval.
arXiv Detail & Related papers (2024-03-27T10:40:14Z) - The Ethics of Automating Legal Actors [58.81546227716182]
We argue that automating the role of the judge raises difficult ethical challenges, in particular for common law legal systems.
Our argument follows from the social role of the judge in actively shaping the law, rather than merely applying it.
Even in the case the models could achieve human-level capabilities, there would still be remaining ethical concerns inherent in the automation of the legal process.
arXiv Detail & Related papers (2023-12-01T13:48:46Z) - BLT: Can Large Language Models Handle Basic Legal Text? [44.89873147675516]
GPT-4 and Claude perform poorly on basic legal text handling.
Poor performance on benchmark casts into doubt their reliability as-is for legal practice.
Fine-tuning on training set brings even a small model to near-perfect performance.
arXiv Detail & Related papers (2023-11-16T09:09:22Z) - Unlocking Practical Applications in Legal Domain: Evaluation of GPT for
Zero-Shot Semantic Annotation of Legal Texts [0.0]
We evaluate the capability of a state-of-the-art generative pre-trained transformer (GPT) model to perform semantic annotation of short text snippets.
We found that the GPT model performs surprisingly well in zero-shot settings on diverse types of documents.
arXiv Detail & Related papers (2023-05-08T01:55:53Z) - SAILER: Structure-aware Pre-trained Language Model for Legal Case
Retrieval [75.05173891207214]
Legal case retrieval plays a core role in the intelligent legal system.
Most existing language models have difficulty understanding the long-distance dependencies between different structures.
We propose a new Structure-Aware pre-traIned language model for LEgal case Retrieval.
arXiv Detail & Related papers (2023-04-22T10:47:01Z) - ArgLegalSumm: Improving Abstractive Summarization of Legal Documents
with Argument Mining [0.2538209532048867]
We introduce a technique to capture the argumentative structure of legal documents by integrating argument role labeling into the summarization process.
Experiments with pretrained language models show that our proposed approach improves performance over strong baselines.
arXiv Detail & Related papers (2022-09-04T15:55:56Z) - LexGLUE: A Benchmark Dataset for Legal Language Understanding in English [15.026117429782996]
We introduce the Legal General Language Evaluation (LexGLUE) benchmark, a collection of datasets for evaluating model performance across a diverse set of legal NLU tasks.
We also provide an evaluation and analysis of several generic and legal-oriented models demonstrating that the latter consistently offer performance improvements across multiple tasks.
arXiv Detail & Related papers (2021-10-03T10:50:51Z) - Lawformer: A Pre-trained Language Model for Chinese Legal Long Documents [56.40163943394202]
We release the Longformer-based pre-trained language model, named as Lawformer, for Chinese legal long documents understanding.
We evaluate Lawformer on a variety of LegalAI tasks, including judgment prediction, similar case retrieval, legal reading comprehension, and legal question answering.
arXiv Detail & Related papers (2021-05-09T09:39:25Z) - How Does NLP Benefit Legal System: A Summary of Legal Artificial
Intelligence [81.04070052740596]
Legal Artificial Intelligence (LegalAI) focuses on applying the technology of artificial intelligence, especially natural language processing, to benefit tasks in the legal domain.
This paper introduces the history, the current state, and the future directions of research in LegalAI.
arXiv Detail & Related papers (2020-04-25T14:45:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.