ArgLegalSumm: Improving Abstractive Summarization of Legal Documents
with Argument Mining
- URL: http://arxiv.org/abs/2209.01650v1
- Date: Sun, 4 Sep 2022 15:55:56 GMT
- Title: ArgLegalSumm: Improving Abstractive Summarization of Legal Documents
with Argument Mining
- Authors: Mohamed Elaraby, Diane Litman
- Abstract summary: We introduce a technique to capture the argumentative structure of legal documents by integrating argument role labeling into the summarization process.
Experiments with pretrained language models show that our proposed approach improves performance over strong baselines.
- Score: 0.2538209532048867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A challenging task when generating summaries of legal documents is the
ability to address their argumentative nature. We introduce a simple technique
to capture the argumentative structure of legal documents by integrating
argument role labeling into the summarization process. Experiments with
pretrained language models show that our proposed approach improves performance
over strong baselines
Related papers
- DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
We introduce DELTA, a discriminative model designed for legal case retrieval.
We leverage shallow decoders to create information bottlenecks, aiming to enhance the representation ability.
Our approach can outperform existing state-of-the-art methods in legal case retrieval.
arXiv Detail & Related papers (2024-03-27T10:40:14Z) - AMERICANO: Argument Generation with Discourse-driven Decomposition and Agent Interaction [25.38899822861742]
We propose Americano, a novel framework with agent interaction for argument generation.
Our approach decomposes the generation process into sequential actions grounded on argumentation theory.
Our method outperforms both end-to-end and chain-of-thought prompting methods.
arXiv Detail & Related papers (2023-10-31T10:47:33Z) - Enhancing Pre-Trained Language Models with Sentence Position Embeddings
for Rhetorical Roles Recognition in Legal Opinions [0.16385815610837165]
The size of legal opinions continues to grow, making it increasingly challenging to develop a model that can accurately predict the rhetorical roles of legal opinions.
We propose a novel model architecture for automatically predicting rhetorical roles using pre-trained language models (PLMs) enhanced with knowledge of sentence position information.
Based on an annotated corpus from the LegalEval@SemEval2023 competition, we demonstrate that our approach requires fewer parameters, resulting in lower computational costs.
arXiv Detail & Related papers (2023-10-08T20:33:55Z) - Towards Argument-Aware Abstractive Summarization of Long Legal Opinions
with Summary Reranking [6.9827388859232045]
We propose a simple approach for the abstractive summarization of long legal opinions that considers the argument structure of the document.
Our approach involves using argument role information to generate multiple candidate summaries, then reranking these candidates based on alignment with the document's argument structure.
We demonstrate the effectiveness of our approach on a dataset of long legal opinions and show that it outperforms several strong baselines.
arXiv Detail & Related papers (2023-06-01T13:44:45Z) - The Legal Argument Reasoning Task in Civil Procedure [2.079168053329397]
We present a new NLP task and dataset from the domain of the U.S. civil procedure.
Each instance of the dataset consists of a general introduction to the case, a particular question, and a possible solution argument.
arXiv Detail & Related papers (2022-11-05T17:41:00Z) - Text Revision by On-the-Fly Representation Optimization [76.11035270753757]
Current state-of-the-art methods formulate these tasks as sequence-to-sequence learning problems.
We present an iterative in-place editing approach for text revision, which requires no parallel data.
It achieves competitive and even better performance than state-of-the-art supervised methods on text simplification.
arXiv Detail & Related papers (2022-04-15T07:38:08Z) - GERE: Generative Evidence Retrieval for Fact Verification [57.78768817972026]
We propose GERE, the first system that retrieves evidences in a generative fashion.
The experimental results on the FEVER dataset show that GERE achieves significant improvements over the state-of-the-art baselines.
arXiv Detail & Related papers (2022-04-12T03:49:35Z) - Robust Deep Reinforcement Learning for Extractive Legal Summarization [13.577343899514396]
We propose to use reinforcement learning to train current deep summarization models to improve their performance on the legal domain.
We observe a consistent and significant performance gain across 3 public legal datasets.
arXiv Detail & Related papers (2021-11-13T17:27:49Z) - A Formalisation of Abstract Argumentation in Higher-Order Logic [77.34726150561087]
We present an approach for representing abstract argumentation frameworks based on an encoding into classical higher-order logic.
This provides a uniform framework for computer-assisted assessment of abstract argumentation frameworks using interactive and automated reasoning tools.
arXiv Detail & Related papers (2021-10-18T10:45:59Z) - Summarizing Text on Any Aspects: A Knowledge-Informed Weakly-Supervised
Approach [89.56158561087209]
We study summarizing on arbitrary aspects relevant to the document.
Due to the lack of supervision data, we develop a new weak supervision construction method and an aspect modeling scheme.
Experiments show our approach achieves performance boosts on summarizing both real and synthetic documents.
arXiv Detail & Related papers (2020-10-14T03:20:46Z) - Aspect-Controlled Neural Argument Generation [65.91772010586605]
We train a language model for argument generation that can be controlled on a fine-grained level to generate sentence-level arguments for a given topic, stance, and aspect.
Our evaluation shows that our generation model is able to generate high-quality, aspect-specific arguments.
These arguments can be used to improve the performance of stance detection models via data augmentation and to generate counter-arguments.
arXiv Detail & Related papers (2020-04-30T20:17:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.