DeepDamageNet: A two-step deep-learning model for multi-disaster building damage segmentation and classification using satellite imagery
- URL: http://arxiv.org/abs/2405.04800v1
- Date: Wed, 8 May 2024 04:21:03 GMT
- Title: DeepDamageNet: A two-step deep-learning model for multi-disaster building damage segmentation and classification using satellite imagery
- Authors: Irene Alisjahbana, Jiawei Li, Ben, Strong, Yue Zhang,
- Abstract summary: We present a solution that performs the two most important tasks in building damage assessment, segmentation and classification, through deep-learning models.
Our best model couples a building identification semantic segmentation convolutional neural network (CNN) to a building damage classification CNN, with a combined F1 score of 0.66.
We find that though our model was able to identify buildings with relatively high accuracy, building damage classification across various disaster types is a difficult task.
- Score: 12.869300064524122
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Satellite imagery has played an increasingly important role in post-disaster building damage assessment. Unfortunately, current methods still rely on manual visual interpretation, which is often time-consuming and can cause very low accuracy. To address the limitations of manual interpretation, there has been a significant increase in efforts to automate the process. We present a solution that performs the two most important tasks in building damage assessment, segmentation and classification, through deep-learning models. We show our results submitted as part of the xView2 Challenge, a competition to design better models for identifying buildings and their damage level after exposure to multiple kinds of natural disasters. Our best model couples a building identification semantic segmentation convolutional neural network (CNN) to a building damage classification CNN, with a combined F1 score of 0.66, surpassing the xView2 challenge baseline F1 score of 0.28. We find that though our model was able to identify buildings with relatively high accuracy, building damage classification across various disaster types is a difficult task due to the visual similarity between different damage levels and different damage distribution between disaster types, highlighting the fact that it may be important to have a probabilistic prior estimate regarding disaster damage in order to obtain accurate predictions.
Related papers
- Multi-step feature fusion for natural disaster damage assessment on satellite images [0.0]
We introduce a novel convolutional neural network (CNN) module that performs feature fusion at multiple network levels.
An additional network element - Fuse Module - was proposed to adapt any CNN model to analyze image pairs.
We report over a 3 percentage point increase in the accuracy of the Vision Transformer model.
arXiv Detail & Related papers (2024-10-29T09:47:32Z) - Classification of structural building damage grades from multi-temporal
photogrammetric point clouds using a machine learning model trained on
virtual laser scanning data [58.720142291102135]
We present a novel approach to automatically assess multi-class building damage from real-world point clouds.
We use a machine learning model trained on virtual laser scanning (VLS) data.
The model yields high multi-target classification accuracies (overall accuracy: 92.0% - 95.1%)
arXiv Detail & Related papers (2023-02-24T12:04:46Z) - xFBD: Focused Building Damage Dataset and Analysis [7.862669992685641]
We propose an auxiliary challenge to the original xView2 competition.
This new challenge involves a new dataset and metrics indicating solution performance when damage is more local and limited than in xBD.
Methods that succeed on this challenge will provide more fine-grained, precise damage information than original xView2 solutions.
arXiv Detail & Related papers (2022-12-23T21:01:18Z) - Multi-view deep learning for reliable post-disaster damage
classification [0.0]
This study aims to enable more reliable automated post-disaster building damage classification using artificial intelligence (AI) and multi-view imagery.
The proposed model is trained and validated on reconnaissance visual dataset containing expert-labeled, geotagged images of the inspected buildings following hurricane Harvey.
arXiv Detail & Related papers (2022-08-06T01:04:13Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - Assessing out-of-domain generalization for robust building damage
detection [78.6363825307044]
Building damage detection can be automated by applying computer vision techniques to satellite imagery.
Models must be robust to a shift in distribution between disaster imagery available for training and the images of the new event.
We argue that future work should focus on the OOD regime instead.
arXiv Detail & Related papers (2020-11-20T10:30:43Z) - Understanding and Diagnosing Vulnerability under Adversarial Attacks [62.661498155101654]
Deep Neural Networks (DNNs) are known to be vulnerable to adversarial attacks.
We propose a novel interpretability method, InterpretGAN, to generate explanations for features used for classification in latent variables.
We also design the first diagnostic method to quantify the vulnerability contributed by each layer.
arXiv Detail & Related papers (2020-07-17T01:56:28Z) - MSNet: A Multilevel Instance Segmentation Network for Natural Disaster
Damage Assessment in Aerial Videos [74.22132693931145]
We study the problem of efficiently assessing building damage after natural disasters like hurricanes, floods or fires.
The first contribution is a new dataset, consisting of user-generated aerial videos from social media with annotations of instance-level building damage masks.
The second contribution is a new model, namely MSNet, which contains novel region proposal network designs.
arXiv Detail & Related papers (2020-06-30T02:23:05Z) - RescueNet: Joint Building Segmentation and Damage Assessment from
Satellite Imagery [83.49145695899388]
RescueNet is a unified model that can simultaneously segment buildings and assess the damage levels to individual buildings and can be trained end-to-end.
RescueNet is tested on the large scale and diverse xBD dataset and achieves significantly better building segmentation and damage classification performance than previous methods.
arXiv Detail & Related papers (2020-04-15T19:52:09Z) - An Attention-Based System for Damage Assessment Using Satellite Imagery [18.43310705820528]
We present Siam-U-Net-Attn model - a multi-class deep learning model with an attention mechanism - to assess damage levels of buildings.
We evaluate the proposed method on xView2, a large-scale building damage assessment dataset, and demonstrate that the proposed approach achieves accurate damage scale classification and building segmentation results simultaneously.
arXiv Detail & Related papers (2020-04-14T16:37:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.