論文の概要: Ai-Driven Vulnerability Analysis in Smart Contracts: Trends, Challenges and Future Directions
- arxiv url: http://arxiv.org/abs/2506.06735v1
- Date: Sat, 07 Jun 2025 09:44:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-10 16:33:10.457227
- Title: Ai-Driven Vulnerability Analysis in Smart Contracts: Trends, Challenges and Future Directions
- Title(参考訳): スマートコントラクトにおけるAI駆動の脆弱性分析:トレンド,課題,今後の方向性
- Authors: Mesut Ozdag,
- Abstract要約: 数値オーバーフロー、再侵入攻撃、不正アクセス許可などの脆弱性は、数百万ドルの損失をもたらしている。
従来のスマートコントラクト監査技術は、拡張性、自動化、開発パターンの進化への適応性の制限に直面しています。
本稿では、機械学習、ディープラーニング、グラフニューラルネットワーク、トランスフォーマーベースモデルに焦点をあて、スマートコントラクトにおける脆弱性検出のための新しいAI駆動技術について検討する。
- 参考スコア(独自算出の注目度): 0.2797210504706914
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Smart contracts, integral to blockchain ecosystems, enable decentralized applications to execute predefined operations without intermediaries. Their ability to enforce trustless interactions has made them a core component of platforms such as Ethereum. Vulnerabilities such as numerical overflows, reentrancy attacks, and improper access permissions have led to the loss of millions of dollars throughout the blockchain and smart contract sector. Traditional smart contract auditing techniques such as manual code reviews and formal verification face limitations in scalability, automation, and adaptability to evolving development patterns. As a result, AI-based solutions have emerged as a promising alternative, offering the ability to learn complex patterns, detect subtle flaws, and provide scalable security assurances. This paper examines novel AI-driven techniques for vulnerability detection in smart contracts, focusing on machine learning, deep learning, graph neural networks, and transformer-based models. This paper analyzes how each technique represents code, processes semantic information, and responds to real world vulnerability classes. We also compare their strengths and weaknesses in terms of accuracy, interpretability, computational overhead, and real time applicability. Lastly, it highlights open challenges and future opportunities for advancing this domain.
- Abstract(参考訳): ブロックチェーンエコシステムに不可欠なスマートコントラクトにより、分散化されたアプリケーションが仲介者なしで事前に定義された操作を実行できるようになる。
信頼できないインタラクションを強制する彼らの能力は、Ethereumのようなプラットフォームの中核的なコンポーネントになった。
数値オーバーフローや再侵入攻撃、不正アクセス許可といった脆弱性は、ブロックチェーンとスマートコントラクトセクター全体で数百万ドルが失われている。
手動のコードレビューや正式な検証のような従来のスマートコントラクト監査技術は、拡張性、自動化、開発パターンの進化への適応性の制限に直面しています。
その結果、AIベースのソリューションが有望な代替手段として現れ、複雑なパターンを学習し、微妙な欠陥を検出し、スケーラブルなセキュリティ保証を提供する。
本稿では、機械学習、ディープラーニング、グラフニューラルネットワーク、トランスフォーマーベースモデルに焦点をあて、スマートコントラクトにおける脆弱性検出のための新しいAI駆動技術について検討する。
本稿では,各手法がコードをどのように表現し,意味情報を処理し,現実世界の脆弱性クラスに応答するかを解析する。
また、精度、解釈可能性、計算オーバーヘッド、リアルタイム適用性の観点から、それらの長所と短所を比較します。
最後に、このドメインを前進させるためのオープンな課題と将来の機会を強調します。
関連論文リスト
- A Comprehensive Study of Exploitable Patterns in Smart Contracts: From Vulnerability to Defense [1.1138859624936408]
スマートコントラクト内の脆弱性は、個々のアプリケーションのセキュリティを損なうだけでなく、より広範なブロックチェーンエコシステムに重大なリスクをもたらす。
本稿では,スマートコントラクトの重要なセキュリティリスク,特にSolidityで記述され,仮想マシン上で実行されるセキュリティリスクを包括的に分析する。
攻撃シナリオを複製し、効果的な対策を評価することにより、2つの一般的かつ重要なタイプ(冗長性と整数オーバーフロー)に焦点を当てる。
論文 参考訳(メタデータ) (2025-04-30T10:00:36Z) - EthCluster: An Unsupervised Static Analysis Method for Ethereum Smart Contract [1.1923665587866032]
スマートコントラクトのSolidityソースコードの脆弱性を特定するために、教師なし学習を使用してモデルをトレーニングする。
実世界のスマートコントラクトに関連する課題に対処するため、トレーニングデータは実際の脆弱性サンプルから導出します。
論文 参考訳(メタデータ) (2025-04-14T08:36:21Z) - Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
我々は人間の知恵について知られているものを調べ、そのAIのビジョンをスケッチする。
AIシステムは特にメタ認知に苦しむ。
スマートAIのベンチマーク、トレーニング、実装について論じる。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - Vulnerability Detection in Ethereum Smart Contracts via Machine Learning: A Qualitative Analysis [0.0]
スマートコントラクトに対する機械学習の脆弱性検出における技術の現状を分析する。
スマートコントラクトにおける脆弱性検出の精度,スコープ,効率を高めるためのベストプラクティスについて議論する。
論文 参考訳(メタデータ) (2024-07-26T10:09:44Z) - Vulnerability Detection in Smart Contracts: A Comprehensive Survey [10.076412566428756]
本研究では、スマートコントラクトにおける脆弱性の検出と緩和を改善する機械学習技術の可能性を検討する。
2018年から2023年にかけて、IEEE、ACM、ScienceDirect、Scopus、Google Scholarといったデータベースから88の記事を分析しました。
その結果、KNN、RF、DT、XG-Boost、SVMといった古典的な機械学習技術は、脆弱性検出において静的ツールよりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-07-08T11:51:15Z) - Dual-view Aware Smart Contract Vulnerability Detection for Ethereum [5.002702845720439]
本報告では,DVDet というデュアルビュー対応スマートコントラクト脆弱性検出フレームワークを提案する。
このフレームワークは最初、スマートコントラクトのソースコードとバイトコードを重み付きグラフに変換し、フローシーケンスを制御する。
データセットの総合的な実験により,我々の手法は脆弱性の検出において他者よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-06-29T06:47:51Z) - Designing an attack-defense game: how to increase robustness of
financial transaction models via a competition [69.08339915577206]
金融セクターにおける悪意ある攻撃のエスカレートリスクを考えると、機械学習モデルの敵戦略と堅牢な防御メカニズムを理解することが重要である。
本研究の目的は、逐次的な財務データを入力として使用するニューラルネットワークモデルに対する敵攻撃と防御の現状とダイナミクスを調査することである。
我々は、現代の金融取引データにおける問題の現実的かつ詳細な調査を可能にする競争を設計した。
参加者は直接対決するので、実生活に近い環境で攻撃や防御が検討される。
論文 参考訳(メタデータ) (2023-08-22T12:53:09Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
我々は、攻撃者が汎用人工知能システムにおける決定を制御できる新しい敵の摂動について研究する。
敵対的なデータ修正とは対照的に、ここで考慮する攻撃メカニズムには、AIシステム自体の変更が含まれる。
論文 参考訳(メタデータ) (2021-06-26T10:50:07Z) - Smart Contract Vulnerability Detection: From Pure Neural Network to
Interpretable Graph Feature and Expert Pattern Fusion [48.744359070088166]
従来のスマートコントラクトの脆弱性検出方法は、専門家の規則に大きく依存している。
最近のディープラーニングアプローチはこの問題を軽減するが、有用な専門家の知識をエンコードすることができない。
ソースコードから専門家パターンを抽出する自動ツールを開発する。
次に、深いグラフの特徴を抽出するために、コードをセマンティックグラフにキャストします。
論文 参考訳(メタデータ) (2021-06-17T07:12:13Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
既存の機械学習ベースの脆弱性検出方法は制限され、スマートコントラクトが脆弱かどうかのみ検査される。
スマートコントラクトのための初のDeep Neural Network(DNN)ベースの脆弱性検出フレームワークであるESCORTを提案する。
ESCORTは6種類の脆弱性に対して平均95%のF1スコアを達成し,検出時間は契約あたり0.02秒であることを示す。
論文 参考訳(メタデータ) (2021-03-23T15:04:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。