論文の概要: Imagining and building wise machines: The centrality of AI metacognition
- arxiv url: http://arxiv.org/abs/2411.02478v2
- Date: Wed, 07 May 2025 21:18:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-09 15:15:32.223974
- Title: Imagining and building wise machines: The centrality of AI metacognition
- Title(参考訳): 賢い機械を想像して構築する:AIメタ認知の中心性
- Authors: Samuel G. B. Johnson, Amir-Hossein Karimi, Yoshua Bengio, Nick Chater, Tobias Gerstenberg, Kate Larson, Sydney Levine, Melanie Mitchell, Iyad Rahwan, Bernhard Schölkopf, Igor Grossmann,
- Abstract要約: 我々は人間の知恵について知られているものを調べ、そのAIのビジョンをスケッチする。
AIシステムは特にメタ認知に苦しむ。
スマートAIのベンチマーク、トレーニング、実装について論じる。
- 参考スコア(独自算出の注目度): 78.76893632793497
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although AI has become increasingly smart, its wisdom has not kept pace. In this article, we examine what is known about human wisdom and sketch a vision of its AI counterpart. We analyze human wisdom as a set of strategies for solving intractable problems-those outside the scope of analytic techniques-including both object-level strategies like heuristics [for managing problems] and metacognitive strategies like intellectual humility, perspective-taking, or context-adaptability [for managing object-level strategies]. We argue that AI systems particularly struggle with metacognition; improved metacognition would lead to AI more robust to novel environments, explainable to users, cooperative with others, and safer in risking fewer misaligned goals with human users. We discuss how wise AI might be benchmarked, trained, and implemented.
- Abstract(参考訳): AIはますます賢くなってきていますが、その知恵はペースを保っていません。
本稿では、人間の知恵について知られていることを調べ、AIのビジョンをスケッチする。
ヒューリスティックス(問題を管理するための)のようなオブジェクトレベルの戦略と、知的謙虚さ、視点取り、文脈適応性(オブジェクトレベルの戦略を管理するための)のようなメタ認知的な戦略の両方を含む。
我々は、AIシステムは特にメタ認知に苦しむ、メタ認知の改善は、新しい環境に対してAIをより堅牢にし、ユーザに説明しやすく、他の人と協力し、人間のユーザとのミスマッチの少ない目標を危険にさらすことにつながる、と論じている。
スマートAIのベンチマーク、トレーニング、実装について論じる。
関連論文リスト
- AI Awareness [8.537898577659401]
我々は、メタ認知、自己認識、社会的認識、状況認識を含む、AI認知の新たな展望を探求する。
我々は、AIの認識がAI能力とどのように密接に関連しているかを調べ、より意識的なAIエージェントがより高いレベルの知的行動を示す傾向があることを示す。
AIの安全性、アライメント、より広範な倫理的懸念など、AIの認識に関連するリスクについて議論する。
論文 参考訳(メタデータ) (2025-04-25T16:03:50Z) - Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
我々は、逆説(AE)の方法論を最先端の強化学習フレームワークに拡張する。
学習したAI制御システムは、敵のタンパリングに対する堅牢性を示す。
トレーニング/学習フレームワークでは、この技術は人間のインタラクションを通じてAIの決定と説明の両方を改善することができる。
論文 参考訳(メタデータ) (2024-07-03T15:38:57Z) - Advancing Explainable AI Toward Human-Like Intelligence: Forging the
Path to Artificial Brain [0.7770029179741429]
説明可能なAI(XAI)における人工知能(AI)と神経科学の交差は、複雑な意思決定プロセスにおける透明性と解釈可能性を高めるために重要である。
本稿では,機能ベースから人間中心のアプローチまで,XAI方法論の進化について考察する。
生成モデルにおける説明可能性の達成、責任あるAIプラクティスの確保、倫理的意味への対処に関する課題について論じる。
論文 参考訳(メタデータ) (2024-02-07T14:09:11Z) - Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic
Systems [67.01132165581667]
本稿では,認知アーキテクチャを外部のニューロシンボリックコンポーネントと統合することにより,AIシステムにおける高レベル推論を実現することを提案する。
本稿では,ACT-Rを中心としたハイブリッドフレームワークについて紹介し,最近の応用における生成モデルの役割について論じる。
論文 参考訳(メタデータ) (2023-11-13T21:20:17Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - Advancing Perception in Artificial Intelligence through Principles of
Cognitive Science [6.637438611344584]
我々は、周囲の信号を入力として取り、それを処理して環境を理解する、知覚の認知機能に焦点を当てる。
我々は、認知科学にインスパイアされたAIシステムを構築するために、AIに一連の方法を提案する。
論文 参考訳(メタデータ) (2023-10-13T01:21:55Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Socially Responsible AI Algorithms: Issues, Purposes, and Challenges [31.382000425295885]
技術者とAI研究者は、信頼できるAIシステムを開発する責任がある。
AIと人間の長期的な信頼を構築するためには、アルゴリズムの公正性を超えて考えることが鍵だ、と私たちは主張する。
論文 参考訳(メタデータ) (2021-01-01T17:34:42Z) - Future Trends for Human-AI Collaboration: A Comprehensive Taxonomy of
AI/AGI Using Multiple Intelligences and Learning Styles [95.58955174499371]
我々は、複数の人間の知性と学習スタイルの様々な側面を説明し、様々なAI問題領域に影響を及ぼす可能性がある。
未来のAIシステムは、人間のユーザと互いにコミュニケーションするだけでなく、知識と知恵を効率的に交換できる。
論文 参考訳(メタデータ) (2020-08-07T21:00:13Z) - Modelos din\^amicos aplicados \`a aprendizagem de valores em
intelig\^encia artificial [0.0]
この地域の数人の研究者が、人間と環境の保存のための堅牢で有益な、安全なAIの概念を開発した。
人工知能エージェントが人間の価値観に合わせた価値を持っていることは、最も重要である。
おそらくこの難しさは、認知的手法を使って価値を表現するという問題に対処する方法から来ています。
論文 参考訳(メタデータ) (2020-07-30T00:56:11Z) - Dynamic Cognition Applied to Value Learning in Artificial Intelligence [0.0]
この分野の数人の研究者が、堅牢で有益で安全な人工知能の概念を開発しようとしている。
人工知能エージェントが人間の価値観に合わせた価値を持っていることは、最も重要である。
この問題に対する可能なアプローチは、SEDのような理論モデルを使用することである。
論文 参考訳(メタデータ) (2020-05-12T03:58:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。