論文の概要: Training-Free Diffusion Framework for Stylized Image Generation with Identity Preservation
- arxiv url: http://arxiv.org/abs/2506.06802v2
- Date: Sat, 27 Sep 2025 11:43:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 14:13:47.339328
- Title: Training-Free Diffusion Framework for Stylized Image Generation with Identity Preservation
- Title(参考訳): 同一性保存によるスティル化画像生成のための学習自由拡散フレームワーク
- Authors: Mohammad Ali Rezaei, Helia Hajikazem, Saeed Khanehgir, Mahdi Javanmardi,
- Abstract要約: 『モザイク復元コンテンツイメージ』技術は複雑なシーンにおけるアイデンティティ保持を著しく向上させる。
『モザイク復元コンテンツ画像』技術は、スタイリゼーション中にオリジナル画像に注意を向けることで、細かな細部を保存しやすくする。
- 参考スコア(独自算出の注目度): 0.31498833540989407
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although diffusion models have demonstrated remarkable generative capabilities, existing style transfer techniques often struggle to maintain identity while achieving high-quality stylization. This limitation becomes particularly critical in practical applications such as advertising and marketing, where preserving the identity of featured individuals is essential for a campaign's effectiveness. It is particularly severe when subjects are distant from the camera or appear within a group, frequently leading to a significant loss of identity. To address this issue, we introduce a novel, training-free framework for identity-preserved stylized image synthesis. Key contributions include the "Mosaic Restored Content Image" technique, which significantly enhances identity retention in complex scenes, and a training-free content consistency loss that improves the preservation of fine-grained details by directing more attention to the original image during stylization. Our experiments reveal that the proposed approach substantially exceeds the baseline model in concurrently maintaining high stylistic fidelity and robust identity integrity, all without necessitating model retraining or fine-tuning.
- Abstract(参考訳): 拡散モデルは顕著な生成能力を示しているが、既存のスタイル転送技術は、高品質なスタイル化を達成しながらアイデンティティを維持するのに苦労することが多い。
この制限は、広告やマーケティングなどの実用的応用において特に重要となり、キャンペーンの有効性には、人物のアイデンティティを保存することが不可欠である。
被写体がカメラから離れているか、グループ内に現れる場合、特に深刻であり、しばしばアイデンティティーが著しく失われる。
この問題に対処するために、ID保存型画像合成のための新しいトレーニング不要のフレームワークを導入する。
重要なコントリビューションには、複雑なシーンにおけるアイデンティティ保持を著しく向上させる"モザイク復元コンテンツイメージ"技術や、スタイリゼーション中に元のイメージに注意を向けることで、きめ細かいディテールの保存を改善するトレーニング不要なコンテンツ一貫性損失などがある。
提案手法は, モデル再訓練や微調整を必要とせず, 高い構造的忠実度と頑健なアイデンティティ整合性を同時に維持する上で, ベースラインモデルを大幅に上回ることを示した。
関連論文リスト
- Robust ID-Specific Face Restoration via Alignment Learning [18.869593414569206]
本稿では,拡散モデルに基づく新しい顔復元フレームワークであるRobust ID-Specific Face Restoration (RIDFR)を提案する。
RIDFRにはアライメント・ラーニング(Alignment Learning)が組み込まれており、複数の参照からの復元結果を同一のアイデンティティと整合させて、ID非関連顔のセマンティクスの干渉を抑制する。
実験により、我々のフレームワークは最先端の手法よりも優れており、高品質なID固有の結果を高いアイデンティティの忠実度で再現し、強靭性を示す。
論文 参考訳(メタデータ) (2025-07-15T03:16:12Z) - Noise Consistency Regularization for Improved Subject-Driven Image Synthesis [55.75426086791612]
微調整安定拡散は、モデルを適用して特定の対象を含む画像を生成することによって、被写体駆動画像合成を可能にする。
既存の微調整手法は、モデルが確実に被写体を捕捉できない不適合と、被写体イメージを記憶し、背景の多様性を減少させる過適合の2つの主要な問題に悩まされる。
拡散微調整のための2つの補助的整合性損失を提案する。第1に、事前(非対象)画像に対する予測拡散雑音が事前訓練されたモデルと一致し、忠実度が向上する。
論文 参考訳(メタデータ) (2025-06-06T19:17:37Z) - ID-Booth: Identity-consistent Face Generation with Diffusion Models [10.042492056152232]
我々はID-Boothと呼ばれる新しい生成拡散に基づくフレームワークを提案する。
このフレームワークは、事前訓練された拡散モデルの合成能力を保ちながら、アイデンティティ一貫性のある画像生成を可能にする。
本手法は、画像の多様性を向上しつつ、競合する手法よりもアイデンティティ間の一貫性とアイデンティティ間の分離性を向上する。
論文 参考訳(メタデータ) (2025-04-10T02:20:18Z) - InstaFace: Identity-Preserving Facial Editing with Single Image Inference [13.067402877443902]
本稿では,単一の画像のみを用いてアイデンティティを保存しながら,現実的な画像を生成するための,新しい拡散ベースのフレームワークInstaFaceを紹介する。
InstaFaceは、トレーニング可能なパラメータを追加することなく、複数の3DMMベースの条件を統合することで、3Dの視点を活用する。
本手法は, 身元保存, 光リアリズム, ポーズ, 表情, 照明の効果的な制御において, 最先端のアプローチよりも優れている。
論文 参考訳(メタデータ) (2025-02-27T22:37:09Z) - IC-Portrait: In-Context Matching for View-Consistent Personalized Portrait [51.18967854258571]
IC-Portraitは、パーソナライズされた肖像画生成のために個々のアイデンティティを正確にエンコードするように設計された新しいフレームワークである。
我々の重要な洞察は、事前学習された拡散モデルは、文脈内密対応マッチングのための高速学習者であるということである。
我々は,IC-Portraitが既存の最先端手法を定量的かつ質的に一貫的に上回っていることを示す。
論文 参考訳(メタデータ) (2025-01-28T18:59:03Z) - PersonaMagic: Stage-Regulated High-Fidelity Face Customization with Tandem Equilibrium [55.72249032433108]
PersonaMagicは、高忠実な顔のカスタマイズのために設計された、ステージ制御された生成技術である。
本手法は,顔の概念を捉えるために,特定の時間間隔内に一連の埋め込みを学習する。
定性評価と定量的評価の両方において、ペルソナマジックが最先端の手法よりも優れていることを確認する。
論文 参考訳(メタデータ) (2024-12-20T08:41:25Z) - Foundation Cures Personalization: Improving Personalized Models' Prompt Consistency via Hidden Foundation Knowledge [33.35678923549471]
textbfFreeCureはパーソナライゼーションモデルの迅速な一貫性を改善するフレームワークである。
本稿では, 個人化プロセスに適切な属性情報をもたらすための, インバージョンベースのプロセスと合わせて, ファンデーションを意識した新たな自己意識モジュールを提案する。
FreeCureは、さまざまな最先端の顔のパーソナライゼーションモデルに対して、迅速な一貫性を顕著に向上させた。
論文 参考訳(メタデータ) (2024-11-22T15:21:38Z) - ZePo: Zero-Shot Portrait Stylization with Faster Sampling [61.14140480095604]
本稿では,4つのサンプリングステップでコンテンツとスタイルの融合を実現する拡散モデルに基づく,インバージョンフリーなポートレートスタイリングフレームワークを提案する。
本稿では,一貫性機能における冗長な特徴をマージする機能統合戦略を提案し,注意制御の計算負荷を低減させる。
論文 参考訳(メタデータ) (2024-08-10T08:53:41Z) - Infinite-ID: Identity-preserved Personalization via ID-semantics Decoupling Paradigm [31.06269858216316]
アイデンティティ保存型パーソナライゼーションのためのID-セマンティックデカップリングパラダイムであるInfinite-IDを提案する。
我々は、十分なID情報を取得するために、追加のイメージクロスアテンションモジュールを組み込んだアイデンティティ強化トレーニングを導入する。
また、2つのストリームをシームレスにマージするために、混合アテンションモジュールとAdaIN平均演算を組み合わせた機能相互作用機構を導入する。
論文 参考訳(メタデータ) (2024-03-18T13:39:53Z) - PortraitBooth: A Versatile Portrait Model for Fast Identity-preserved
Personalization [92.90392834835751]
PortraitBoothは高効率、堅牢なID保存、表現編集可能な画像生成のために設計されている。
PortraitBoothは計算オーバーヘッドを排除し、アイデンティティの歪みを軽減する。
生成した画像の多様な表情に対する感情認識のクロスアテンション制御が組み込まれている。
論文 参考訳(メタデータ) (2023-12-11T13:03:29Z) - When StyleGAN Meets Stable Diffusion: a $\mathscr{W}_+$ Adapter for
Personalized Image Generation [60.305112612629465]
テキストと画像の拡散モデルは、多種多様で高品質でフォトリアリスティックな画像を生成するのに優れている。
本稿では,拡散モデルのための拡張されたアイデンティティ保存とアンタングル化を実現するために,StyleGAN 埋め込み空間 $mathcalW_+$ の新たな利用法を提案する。
提案手法は,即時記述に適合するだけでなく,一般的なスタイルGAN編集方向に対応可能なパーソナライズされたテキスト・ツー・イメージ出力を生成する。
論文 参考訳(メタデータ) (2023-11-29T09:05:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。