論文の概要: Robust ID-Specific Face Restoration via Alignment Learning
- arxiv url: http://arxiv.org/abs/2507.10943v1
- Date: Tue, 15 Jul 2025 03:16:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-16 19:46:02.965839
- Title: Robust ID-Specific Face Restoration via Alignment Learning
- Title(参考訳): ロバストID-アライメント学習による顔復元
- Authors: Yushun Fang, Lu Liu, Xiang Gao, Qiang Hu, Ning Cao, Jianghe Cui, Gang Chen, Xiaoyun Zhang,
- Abstract要約: 本稿では,拡散モデルに基づく新しい顔復元フレームワークであるRobust ID-Specific Face Restoration (RIDFR)を提案する。
RIDFRにはアライメント・ラーニング(Alignment Learning)が組み込まれており、複数の参照からの復元結果を同一のアイデンティティと整合させて、ID非関連顔のセマンティクスの干渉を抑制する。
実験により、我々のフレームワークは最先端の手法よりも優れており、高品質なID固有の結果を高いアイデンティティの忠実度で再現し、強靭性を示す。
- 参考スコア(独自算出の注目度): 18.869593414569206
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The latest developments in Face Restoration have yielded significant advancements in visual quality through the utilization of diverse diffusion priors. Nevertheless, the uncertainty of face identity introduced by identity-obscure inputs and stochastic generative processes remains unresolved. To address this challenge, we present Robust ID-Specific Face Restoration (RIDFR), a novel ID-specific face restoration framework based on diffusion models. Specifically, RIDFR leverages a pre-trained diffusion model in conjunction with two parallel conditioning modules. The Content Injection Module inputs the severely degraded image, while the Identity Injection Module integrates the specific identity from a given image. Subsequently, RIDFR incorporates Alignment Learning, which aligns the restoration results from multiple references with the same identity in order to suppress the interference of ID-irrelevant face semantics (e.g. pose, expression, make-up, hair style). Experiments demonstrate that our framework outperforms the state-of-the-art methods, reconstructing high-quality ID-specific results with high identity fidelity and demonstrating strong robustness.
- Abstract(参考訳): 顔修復の最近の進歩は、様々な拡散前の手法を利用して視覚的品質を著しく向上させてきた。
それでも、アイデンティティ・オブスキュア入力や確率的生成過程によって引き起こされる顔のアイデンティティの不確実性は未解決のままである。
この課題に対処するために、拡散モデルに基づく新しいID固有の顔復元フレームワークであるRobust ID-Specific Face Restoration (RIDFR)を提案する。
具体的には、RIDFRは2つの並列条件付きモジュールと共に事前訓練された拡散モデルを利用する。
Content Injection Moduleはひどく劣化したイメージを入力し、Identity Injection Moduleは特定のイメージから特定のアイデンティティを統合する。
その後、RIDFRはアライメント学習(Alignment Learning)を導入し、複数の参照からの復元結果を同一のアイデンティティと整合させて、ID非関連顔意味論(例えば、ポーズ、表現、メイクアップ、ヘアスタイル)の干渉を抑制する。
実験により、我々のフレームワークは最先端の手法よりも優れており、高品質なID固有の結果を高いアイデンティティの忠実度で再現し、強靭性を示す。
関連論文リスト
- FaceMe: Robust Blind Face Restoration with Personal Identification [27.295878867436688]
拡散モデルに基づく顔復元手法FaceMeを提案する。
1枚または数枚の参照画像が与えられた場合、アイデンティティ関連の特徴を抽出するためにアイデンティティエンコーダを使用し、高品質な顔画像の復元において拡散モデルを導出するためのプロンプトとして機能する。
実験結果から,FaceMeは顔の良質な画像の復元が可能であり,顔認証の整合性を保ち,優れた性能とロバスト性を実現していることがわかった。
論文 参考訳(メタデータ) (2025-01-09T11:52:54Z) - HiFiVFS: High Fidelity Video Face Swapping [35.49571526968986]
Face swappingは、ソースからのIDとターゲットからの属性を組み合わせた結果を生成することを目的としている。
安定ビデオ拡散の強い生成能力と時間的先行を生かした高忠実度ビデオ顔交換フレームワークを提案する。
本手法は,映像面スワップにおける最新技術(SOTA)を質的かつ定量的に達成する。
論文 参考訳(メタデータ) (2024-11-27T12:30:24Z) - OSDFace: One-Step Diffusion Model for Face Restoration [72.5045389847792]
拡散モデルは、顔の修復において顕著な性能を示した。
顔復元のための新しいワンステップ拡散モデルOSDFaceを提案する。
その結果,OSDFaceは現状のSOTA(State-of-the-art)手法を視覚的品質と定量的指標の両方で上回っていることがわかった。
論文 参考訳(メタデータ) (2024-11-26T07:07:48Z) - RestorerID: Towards Tuning-Free Face Restoration with ID Preservation [18.022455458259305]
本研究では,顔修復時のID保存を取り入れたRestorerIDというチューニング不要な手法を提案する。
そこで本研究では,ID注入とベースブラインド顔復元モデルを組み合わせた統合フレームワークを提案する。
Celeb-Refデータセットと実世界のシナリオの実験結果から、RestorerIDはID保存による高品質な顔復元を効果的に実現することが示された。
論文 参考訳(メタデータ) (2024-11-21T13:50:25Z) - ID-Aligner: Enhancing Identity-Preserving Text-to-Image Generation with Reward Feedback Learning [57.91881829308395]
AIポートレートや広告といった幅広いアプリケーションシナリオのために、ID-T2I(ID-preserving text-to-image generation)が注目されている。
我々は,ID-T2I性能を向上させるための一般的なフィードバック学習フレームワークである textbfID-Aligner を提案する。
論文 参考訳(メタデータ) (2024-04-23T18:41:56Z) - Infinite-ID: Identity-preserved Personalization via ID-semantics Decoupling Paradigm [31.06269858216316]
アイデンティティ保存型パーソナライゼーションのためのID-セマンティックデカップリングパラダイムであるInfinite-IDを提案する。
我々は、十分なID情報を取得するために、追加のイメージクロスアテンションモジュールを組み込んだアイデンティティ強化トレーニングを導入する。
また、2つのストリームをシームレスにマージするために、混合アテンションモジュールとAdaIN平均演算を組み合わせた機能相互作用機構を導入する。
論文 参考訳(メタデータ) (2024-03-18T13:39:53Z) - CLR-Face: Conditional Latent Refinement for Blind Face Restoration Using
Score-Based Diffusion Models [57.9771859175664]
最近の生成優先法は、有望なブラインドフェイス修復性能を示している。
入力に忠実なきめ細かい顔の詳細を生成することは、依然として難しい問題である。
本稿では,VQGANアーキテクチャの内部に拡散型プライマーを導入し,非破壊な潜伏埋め込みにおける分布の学習に重点を置いている。
論文 参考訳(メタデータ) (2024-02-08T23:51:49Z) - Disentangle Before Anonymize: A Two-stage Framework for Attribute-preserved and Occlusion-robust De-identification [55.741525129613535]
匿名化前の混乱」は、新しい二段階フレームワーク(DBAF)である
このフレームワークには、Contrastive Identity Disentanglement (CID)モジュールとKey-authorized Reversible Identity Anonymization (KRIA)モジュールが含まれている。
大規模な実験により,本手法は最先端の非識別手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-11-15T08:59:02Z) - FaceDancer: Pose- and Occlusion-Aware High Fidelity Face Swapping [62.38898610210771]
そこで我々は,FaceDancerという顔のスワップとID転送のための新しい単一ステージ手法を提案する。
アダプティブ・フィーチャー・フュージョン・アテンション(AFFA)と解釈的特徴類似性規則化(IFSR)の2つの主要なコントリビューションがある。
論文 参考訳(メタデータ) (2022-10-19T11:31:38Z) - Cross-Resolution Adversarial Dual Network for Person Re-Identification
and Beyond [59.149653740463435]
人物再識別(re-ID)は、同一人物の画像をカメラビューでマッチングすることを目的としている。
カメラと関心のある人の距離が異なるため、解像度ミスマッチが期待できる。
本稿では,クロスレゾリューションな人物のリIDに対処する新たな生成的対向ネットワークを提案する。
論文 参考訳(メタデータ) (2020-02-19T07:21:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。