Curvature Enhanced Data Augmentation for Regression
- URL: http://arxiv.org/abs/2506.06853v1
- Date: Sat, 07 Jun 2025 16:18:37 GMT
- Title: Curvature Enhanced Data Augmentation for Regression
- Authors: Ilya Kaufman Sirot, Omri Azencot,
- Abstract summary: We introduce the Curvature-Enhanced Manifold Sampling (CEMS) method for regression tasks.<n>CEMS delivers superior performance in both in-distribution and out-of-distribution scenarios.
- Score: 4.910937238451485
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning models with a large number of parameters, often referred to as over-parameterized models, have achieved exceptional performance across various tasks. Despite concerns about overfitting, these models frequently generalize well to unseen data, thanks to effective regularization techniques, with data augmentation being among the most widely used. While data augmentation has shown great success in classification tasks using label-preserving transformations, its application in regression problems has received less attention. Recently, a novel \emph{manifold learning} approach for generating synthetic data was proposed, utilizing a first-order approximation of the data manifold. Building on this foundation, we present a theoretical framework and practical tools for approximating and sampling general data manifolds. Furthermore, we introduce the Curvature-Enhanced Manifold Sampling (CEMS) method for regression tasks. CEMS leverages a second-order representation of the data manifold to enable efficient sampling and reconstruction of new data points. Extensive evaluations across multiple datasets and comparisons with state-of-the-art methods demonstrate that CEMS delivers superior performance in both in-distribution and out-of-distribution scenarios, while introducing only minimal computational overhead. Code is available at https://github.com/azencot-group/CEMS.
Related papers
- SPaRFT: Self-Paced Reinforcement Fine-Tuning for Large Language Models [51.74498855100541]
Large language models (LLMs) have shown strong reasoning capabilities when fine-tuned with reinforcement learning (RL)<n>We propose textbfSPaRFT, a self-paced learning framework that enables efficient learning based on the capability of the model being trained.
arXiv Detail & Related papers (2025-08-07T03:50:48Z) - DAPLSR: Data Augmentation Partial Least Squares Regression Model via Manifold Optimization [6.200365627295667]
This paper proposes a Data Augmentation Partial Least Squares Regression model via manifold optimization.<n>The proposed DAPLSR model achieves superior classification performance and outstanding evaluation metrics on various datasets.
arXiv Detail & Related papers (2025-04-23T11:58:28Z) - Optimizing Pretraining Data Mixtures with LLM-Estimated Utility [52.08428597962423]
Large Language Models improve with increasing amounts of high-quality training data.<n>We find token-counts outperform manual and learned mixes, indicating that simple approaches for dataset size and diversity are surprisingly effective.<n>We propose two complementary approaches: UtiliMax, which extends token-based $200s by incorporating utility estimates from reduced-scale ablations, achieving up to a 10.6x speedup over manual baselines; and Model Estimated Data Utility (MEDU), which leverages LLMs to estimate data utility from small samples, matching ablation-based performance while reducing computational requirements by $simx.
arXiv Detail & Related papers (2025-01-20T21:10:22Z) - A Distribution-Aware Flow-Matching for Generating Unstructured Data for Few-Shot Reinforcement Learning [1.0709300917082865]
We introduce a distribution-aware flow matching approach to generate synthetic unstructured data for few-shot reinforcement learning.<n>Our approach addresses key challenges in traditional model-based RL, such as overfitting and data correlation.<n>Results demonstrate that our method achieves stable convergence in terms of maximum Q-value while enhancing frame rates by 30% in the initial timestamps.
arXiv Detail & Related papers (2024-09-21T15:50:59Z) - Variational Learning of Gaussian Process Latent Variable Models through Stochastic Gradient Annealed Importance Sampling [22.256068524699472]
In this work, we propose an Annealed Importance Sampling (AIS) approach to address these issues.
We combine the strengths of Sequential Monte Carlo samplers and VI to explore a wider range of posterior distributions and gradually approach the target distribution.
Experimental results on both toy and image datasets demonstrate that our method outperforms state-of-the-art methods in terms of tighter variational bounds, higher log-likelihoods, and more robust convergence.
arXiv Detail & Related papers (2024-08-13T08:09:05Z) - First-Order Manifold Data Augmentation for Regression Learning [4.910937238451485]
We introduce FOMA: a new data-driven domain-independent data augmentation method.
We evaluate FOMA on in-distribution generalization and out-of-distribution benchmarks, and we show that it improves the generalization of several neural architectures.
arXiv Detail & Related papers (2024-06-16T12:35:05Z) - Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
We introduce a semi-supervised learning approach based on topological projections in self-organizing maps (SOMs)
Our proposed method first trains SOMs on unlabeled data and then a minimal number of available labeled data points are assigned to key best matching units (BMU)
Our results indicate that the proposed minimally supervised model significantly outperforms traditional regression techniques.
arXiv Detail & Related papers (2024-01-12T22:51:48Z) - Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
We present a novel extension of multi-task Gaussian Cox processes for modeling heterogeneous correlated tasks jointly.
A MOGP prior over the parameters of the dedicated likelihoods for classification, regression and point process tasks can facilitate sharing of information between heterogeneous tasks.
We derive a mean-field approximation to realize closed-form iterative updates for estimating model parameters.
arXiv Detail & Related papers (2023-08-29T15:01:01Z) - Nonparametric Functional Analysis of Generalized Linear Models Under
Nonlinear Constraints [0.0]
This article introduces a novel nonparametric methodology for Generalized Linear Models.
It combines the strengths of the binary regression and latent variable formulations for categorical data.
It extends recently published parametric versions of the methodology and generalizes it.
arXiv Detail & Related papers (2021-10-11T04:49:59Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
We propose the model S3-Rec, which stands for Self-Supervised learning for Sequential Recommendation.
For our task, we devise four auxiliary self-supervised objectives to learn the correlations among attribute, item, subsequence, and sequence.
Extensive experiments conducted on six real-world datasets demonstrate the superiority of our proposed method over existing state-of-the-art methods.
arXiv Detail & Related papers (2020-08-18T11:44:10Z) - Generative Data Augmentation for Commonsense Reasoning [75.26876609249197]
G-DAUGC is a novel generative data augmentation method that aims to achieve more accurate and robust learning in the low-resource setting.
G-DAUGC consistently outperforms existing data augmentation methods based on back-translation.
Our analysis demonstrates that G-DAUGC produces a diverse set of fluent training examples, and that its selection and training approaches are important for performance.
arXiv Detail & Related papers (2020-04-24T06:12:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.