LLM-D12: A Dual-Dimensional Scale of Instrumental and Relational Dependencies on Large Language Models
- URL: http://arxiv.org/abs/2506.06874v3
- Date: Thu, 24 Jul 2025 14:00:31 GMT
- Title: LLM-D12: A Dual-Dimensional Scale of Instrumental and Relational Dependencies on Large Language Models
- Authors: Ala Yankouskaya, Areej B. Babiker, Syeda W. F. Rizvi, Sameha Alshakhsi, Magnus Liebherr, Raian Ali,
- Abstract summary: There is growing interest in understanding how people interact with large language models (LLMs)<n>We developed and validated a new 12-item questionnaire to measure LLM dependency, referred to as LLM-D12.<n>The scale was based on the authors' prior theoretical work, with items developed accordingly and responses collected from 526 participants in the UK.
- Score: 0.32985979395737786
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: There is growing interest in understanding how people interact with large language models (LLMs) and whether such models elicit dependency or even addictive behaviour. Validated tools to assess the extent to which individuals may become dependent on LLMs are scarce and primarily build on classic behavioral addiction symptoms, adapted to the context of LLM use. We view this as a conceptual limitation, as the LLM-human relationship is more nuanced and warrants a fresh and distinct perspective. To address this gap, we developed and validated a new 12-item questionnaire to measure LLM dependency, referred to as LLM-D12. The scale was based on the authors' prior theoretical work, with items developed accordingly and responses collected from 526 participants in the UK. Exploratory and confirmatory factor analyses, performed on separate halves of the total sample using a split-sample approach, supported a two-factor structure: Instrumental Dependency (six items) and Relationship Dependency (six items). Instrumental Dependency reflects the extent to which individuals rely on LLMs to support or collaborate in decision-making and cognitive tasks. Relationship Dependency captures the tendency to perceive LLMs as socially meaningful, sentient, or companion-like entities. The two-factor structure demonstrated excellent internal consistency and clear discriminant validity. External validation confirmed both the conceptual foundation and the distinction between the two subscales. The psychometric properties and structure of our LLM-D12 scale were interpreted in light of the emerging view that dependency on LLMs does not necessarily indicate dysfunction but may still reflect reliance levels that could become problematic in certain contexts.
Related papers
- How LLMs Comprehend Temporal Meaning in Narratives: A Case Study in Cognitive Evaluation of LLMs [13.822169295436177]
We investigate how large language models (LLMs) process the temporal meaning of linguistic aspect in narratives that were previously used in human studies.<n>Our findings show that LLMs over-rely on prototypicality, produce inconsistent aspectual judgments, and struggle with causal reasoning derived from aspect.<n>These results suggest that LLMs process aspect fundamentally differently from humans and lack robust narrative understanding.
arXiv Detail & Related papers (2025-07-18T18:28:35Z) - Beyond Keywords: Evaluating Large Language Model Classification of Nuanced Ableism [2.0435202333125977]
Large language models (LLMs) are increasingly used in decision-making tasks like r'esum'e screening and content moderation.<n>We evaluate the ability of four LLMs to identify nuanced ableism directed at autistic individuals.<n>Our results reveal that LLMs can identify autism-related language but often miss harmful or offensive connotations.
arXiv Detail & Related papers (2025-05-26T20:01:44Z) - If an LLM Were a Character, Would It Know Its Own Story? Evaluating Lifelong Learning in LLMs [55.8331366739144]
We introduce LIFESTATE-BENCH, a benchmark designed to assess lifelong learning in large language models (LLMs)<n>Our fact checking evaluation probes models' self-awareness, episodic memory retrieval, and relationship tracking, across both parametric and non-parametric approaches.
arXiv Detail & Related papers (2025-03-30T16:50:57Z) - Latent Factor Models Meets Instructions: Goal-conditioned Latent Factor Discovery without Task Supervision [50.45597801390757]
Instruct-LF is a goal-oriented latent factor discovery system.<n>It integrates instruction-following ability with statistical models to handle noisy datasets.
arXiv Detail & Related papers (2025-02-21T02:03:08Z) - Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search [57.28671084993782]
Large language models (LLMs) have demonstrated remarkable reasoning capabilities across diverse domains.<n>Recent studies have shown that increasing test-time computation enhances LLMs' reasoning capabilities.<n>We propose a two-stage training paradigm: 1) a small-scale format tuning stage to internalize the COAT reasoning format and 2) a large-scale self-improvement stage leveraging reinforcement learning.
arXiv Detail & Related papers (2025-02-04T17:26:58Z) - Hate Personified: Investigating the role of LLMs in content moderation [64.26243779985393]
For subjective tasks such as hate detection, where people perceive hate differently, the Large Language Model's (LLM) ability to represent diverse groups is unclear.
By including additional context in prompts, we analyze LLM's sensitivity to geographical priming, persona attributes, and numerical information to assess how well the needs of various groups are reflected.
arXiv Detail & Related papers (2024-10-03T16:43:17Z) - Cognitive phantoms in LLMs through the lens of latent variables [0.3441021278275805]
Large language models (LLMs) increasingly reach real-world applications, necessitating a better understanding of their behaviour.
Recent studies administering psychometric questionnaires to LLMs report human-like traits in LLMs, potentially influencing behaviour.
This approach suffers from a validity problem: it presupposes that these traits exist in LLMs and that they are measurable with tools designed for humans.
This study investigates this problem by comparing latent structures of personality between humans and three LLMs using two validated personality questionnaires.
arXiv Detail & Related papers (2024-09-06T12:42:35Z) - Potential and Limitations of LLMs in Capturing Structured Semantics: A Case Study on SRL [78.80673954827773]
Large Language Models (LLMs) play a crucial role in capturing structured semantics to enhance language understanding, improve interpretability, and reduce bias.
We propose using Semantic Role Labeling (SRL) as a fundamental task to explore LLMs' ability to extract structured semantics.
We find interesting potential: LLMs can indeed capture semantic structures, and scaling-up doesn't always mirror potential.
We are surprised to discover that significant overlap in the errors is made by both LLMs and untrained humans, accounting for almost 30% of all errors.
arXiv Detail & Related papers (2024-05-10T11:44:05Z) - Explaining Large Language Models Decisions Using Shapley Values [1.223779595809275]
Large language models (LLMs) have opened up exciting possibilities for simulating human behavior and cognitive processes.
However, the validity of utilizing LLMs as stand-ins for human subjects remains uncertain.
This paper presents a novel approach based on Shapley values to interpret LLM behavior and quantify the relative contribution of each prompt component to the model's output.
arXiv Detail & Related papers (2024-03-29T22:49:43Z) - Do LLM Agents Exhibit Social Behavior? [5.094340963261968]
State-Understanding-Value-Action (SUVA) is a framework to systematically analyze responses in social contexts.
It assesses social behavior through both their final decisions and the response generation processes leading to those decisions.
We demonstrate that utterance-based reasoning reliably predicts LLMs' final actions.
arXiv Detail & Related papers (2023-12-23T08:46:53Z) - Do LLMs exhibit human-like response biases? A case study in survey
design [66.1850490474361]
We investigate the extent to which large language models (LLMs) reflect human response biases, if at all.
We design a dataset and framework to evaluate whether LLMs exhibit human-like response biases in survey questionnaires.
Our comprehensive evaluation of nine models shows that popular open and commercial LLMs generally fail to reflect human-like behavior.
arXiv Detail & Related papers (2023-11-07T15:40:43Z) - Revisiting the Reliability of Psychological Scales on Large Language Models [62.57981196992073]
This study aims to determine the reliability of applying personality assessments to Large Language Models.
Analysis of 2,500 settings per model, including GPT-3.5, GPT-4, Gemini-Pro, and LLaMA-3.1, reveals that various LLMs show consistency in responses to the Big Five Inventory.
arXiv Detail & Related papers (2023-05-31T15:03:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.