Graph-Based Physics-Guided Urban PM2.5 Air Quality Imputation with Constrained Monitoring Data
- URL: http://arxiv.org/abs/2506.06917v1
- Date: Sat, 07 Jun 2025 20:33:52 GMT
- Title: Graph-Based Physics-Guided Urban PM2.5 Air Quality Imputation with Constrained Monitoring Data
- Authors: Shangjie Du, Hui Wei, Dong Yoon Lee, Zhizhang Hu, Shijia Pan,
- Abstract summary: This work introduces GraPhy, a graph-based, physics-guided learning framework for high-resolution and accurate air quality modeling in urban areas with limited monitoring data.<n>Experiments using data from California's socioeconomically disadvantaged San Joaquin Valley show that GraPhy achieves the overall best performance evaluated by mean squared error (MSE), mean absolute error (MAE), and R-square value (R2), improving the performance by 9%-56% compared to various baseline models.
- Score: 7.076209890890611
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work introduces GraPhy, a graph-based, physics-guided learning framework for high-resolution and accurate air quality modeling in urban areas with limited monitoring data. Fine-grained air quality monitoring information is essential for reducing public exposure to pollutants. However, monitoring networks are often sparse in socioeconomically disadvantaged regions, limiting the accuracy and resolution of air quality modeling. To address this, we propose a physics-guided graph neural network architecture called GraPhy with layers and edge features designed specifically for low-resolution monitoring data. Experiments using data from California's socioeconomically disadvantaged San Joaquin Valley show that GraPhy achieves the overall best performance evaluated by mean squared error (MSE), mean absolute error (MAE), and R-square value (R2), improving the performance by 9%-56% compared to various baseline models. Moreover, GraPhy consistently outperforms baselines across different spatial heterogeneity levels, demonstrating the effectiveness of our model design.
Related papers
- A Nonlinear Low-rank Representation Model with Convolutional Neural Network for Imputing Water Quality Data [12.655766751647985]
Integrity of Water Quality Data (WQD) is critical in environmental monitoring for scientific decision-making and ecological protection.<n>Traditional data imputation methods are difficult to depict the potential dynamics and fail to capture the deep data features.<n>This paper proposes a Low-rank Representation model (NLR) with Convolutional Neural Networks (CNN) for imputing missing WQD.
arXiv Detail & Related papers (2025-06-30T08:48:19Z) - Data Augmentation and Resolution Enhancement using GANs and Diffusion Models for Tree Segmentation [49.13393683126712]
Urban forests play a key role in enhancing environmental quality and supporting biodiversity in cities.<n> accurately detecting trees is challenging due to complex landscapes and the variability in image resolution caused by different satellite sensors or UAV flight altitudes.<n>We propose a novel pipeline that integrates domain adaptation with GANs and Diffusion models to enhance the quality of low-resolution aerial images.
arXiv Detail & Related papers (2025-05-21T03:57:10Z) - Can Deep Learning Trigger Alerts from Mobile-Captured Images? [0.0594961162060159]
This research contributes to verification of data augmentation techniques, CNN-based regression modelling for air quality prediction, and user-centric air quality monitoring through mobile technology.<n>The proposed system offers practical solutions for individuals to make informed environmental health and well-being decisions.
arXiv Detail & Related papers (2025-01-07T03:39:43Z) - HGOE: Hybrid External and Internal Graph Outlier Exposure for Graph Out-of-Distribution Detection [78.47008997035158]
Graph data exhibits greater diversity but lower robustness to perturbations, complicating the integration of outliers.
We propose the introduction of textbfHybrid External and Internal textbfGraph textbfOutlier textbfExposure (HGOE) to improve graph OOD detection performance.
arXiv Detail & Related papers (2024-07-31T16:55:18Z) - Spatio-Temporal Field Neural Networks for Air Quality Inference [13.582971831446647]
We propose a new model, Spatio-Temporal Field Neural Network, and its corresponding framework, Pyramidal Inference.
Our model achieves state-of-the-art performance in nationwide air quality inference in the Chinese Mainland.
arXiv Detail & Related papers (2024-03-02T10:14:42Z) - Spatiotemporal Graph Convolutional Recurrent Neural Network Model for
Citywide Air Pollution Forecasting [0.0]
Air pollution varies in a manner and depends on many complicated factors.
An image-based representation may not be ideal as air pollution and other impact factors have natural graph structures.
A Graph Convolutional Network (GCN) can efficiently represent the spatial features of air quality readings in the whole city.
Our approach is superior to a hybrid GCN-based method in a real-world air pollution dataset.
arXiv Detail & Related papers (2023-04-25T07:57:07Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - DeepWSD: Projecting Degradations in Perceptual Space to Wasserstein
Distance in Deep Feature Space [67.07476542850566]
We propose to model the quality degradation in perceptual space from a statistical distribution perspective.
The quality is measured based upon the Wasserstein distance in the deep feature domain.
The deep Wasserstein distance (DeepWSD) performed on features from neural networks enjoys better interpretability of the quality contamination.
arXiv Detail & Related papers (2022-08-05T02:46:12Z) - A Generative Deep Learning Approach to Stochastic Downscaling of
Precipitation Forecasts [0.5906031288935515]
Generative adversarial networks (GANs) have been demonstrated by the computer vision community to be successful at super-resolution problems.
We show that GANs and VAE-GANs can match the statistical properties of state-of-the-art pointwise post-processing methods whilst creating high-resolution, spatially coherent precipitation maps.
arXiv Detail & Related papers (2022-04-05T07:19:42Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework with UAV Swarms [53.38353133198842]
Air quality significantly affects human health, it is increasingly important to accurately and timely predict the Air Quality Index (AQI)
This paper proposes a new federated learning-based aerial-ground air quality sensing framework for fine-grained 3D air quality monitoring and forecasting.
For ground sensing systems, we propose a Graph Convolutional neural network-based Long Short-Term Memory (GC-LSTM) model to achieve accurate, real-time and future AQI inference.
arXiv Detail & Related papers (2020-07-23T13:32:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.