Conditional Denoising Diffusion for ISAC Enhanced Channel Estimation in Cell-Free 6G
- URL: http://arxiv.org/abs/2506.06942v1
- Date: Sat, 07 Jun 2025 22:45:21 GMT
- Title: Conditional Denoising Diffusion for ISAC Enhanced Channel Estimation in Cell-Free 6G
- Authors: Mohammad Farzanullah, Han Zhang, Akram Bin Sediq, Ali Afana, Melike Erol-Kantarci,
- Abstract summary: Cell-free Integrated Sensing and Communication (ISAC) aims to revolutionize 6th Generation (6G) networks.<n>Channel estimation is a critical step in cell-free ISAC systems to ensure reliable communication.<n>This paper presents a novel framework leveraging sensing information as a key input within a Conditional Denoising Diffusion Model.
- Score: 10.728362890819392
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cell-free Integrated Sensing and Communication (ISAC) aims to revolutionize 6th Generation (6G) networks. By combining distributed access points with ISAC capabilities, it boosts spectral efficiency, situational awareness, and communication reliability. Channel estimation is a critical step in cell-free ISAC systems to ensure reliable communication, but its performance is usually limited by challenges such as pilot contamination and noisy channel estimates. This paper presents a novel framework leveraging sensing information as a key input within a Conditional Denoising Diffusion Model (CDDM). In this framework, we integrate CDDM with a Multimodal Transformer (MMT) to enhance channel estimation in ISAC-enabled cell-free systems. The MMT encoder effectively captures inter-modal relationships between sensing and location data, enabling the CDDM to iteratively denoise and refine channel estimates. Simulation results demonstrate that the proposed approach achieves significant performance gains. As compared with Least Squares (LS) and Minimum Mean Squared Error (MMSE) estimators, the proposed model achieves normalized mean squared error (NMSE) improvements of 8 dB and 9 dB, respectively. Moreover, we achieve a 27.8% NMSE improvement compared to the traditional denoising diffusion model (TDDM), which does not incorporate sensing channel information. Additionally, the model exhibits higher robustness against pilot contamination and maintains high accuracy under challenging conditions, such as low signal-to-noise ratios (SNRs). According to the simulation results, the model performs well for users near sensing targets by leveraging the correlation between sensing and communication channels.
Related papers
- Latent Diffusion Model Based Denoising Receiver for 6G Semantic Communication: From Stochastic Differential Theory to Application [55.42071552739813]
A novel semantic communication framework empowered by generative artificial intelligence (GAI) is proposed.<n>A theoretical foundation is established based on differential equations (SDEs)<n>A closed-form analytical relationship between the signal-to-noise ratio (SNR) and the denoising timestep is derived.<n>To address the distribution mismatch between the received signal and the DM's training data, a mathematically principled scaling mechanism is introduced.
arXiv Detail & Related papers (2025-06-06T03:20:32Z) - Diffusion-Driven Semantic Communication for Generative Models with Bandwidth Constraints [66.63250537475973]
This paper introduces a diffusion-driven semantic communication framework with advanced VAE-based compression for bandwidth-constrained generative model.<n>Our experimental results demonstrate significant improvements in pixel-level metrics like peak signal to noise ratio (PSNR) and semantic metrics like learned perceptual image patch similarity (LPIPS)
arXiv Detail & Related papers (2024-07-26T02:34:25Z) - Latent Diffusion Model-Enabled Low-Latency Semantic Communication in the Presence of Semantic Ambiguities and Wireless Channel Noises [18.539501941328393]
This paper develops a latent diffusion model-enabled SemCom system to handle outliers in source data.<n>A lightweight single-layer latent space transformation adapter completes one-shot learning at the transmitter.<n>An end-to-end consistency distillation strategy is used to distill the diffusion models trained in latent space.
arXiv Detail & Related papers (2024-06-09T23:39:31Z) - Deep learning approaches to indoor wireless channel estimation for low-power communication [0.0]
This paper presents two Fully Connected Neural Networks (FCNNs)-based Low Power (LP-IoT) channel estimation models, leveraging RSSI for accurate channel estimation in LP-IoT communication.
Our Model A exhibits a remarkable 99.02% reduction in Mean Squared Error (MSE), and Model B demonstrates a notable 90.03% MSE reduction compared to the benchmarks set by current studies.
arXiv Detail & Related papers (2024-05-21T00:36:34Z) - MoE-AMC: Enhancing Automatic Modulation Classification Performance Using
Mixture-of-Experts [2.6764607949560593]
MoE-AMC is a novel Mixture-of-Experts (MoE) based model crafted to address Automatic Modulation Classification (AMC) in a well-balanced manner.
MoE-AMC seamlessly combines the strengths of LSRM for handling low SNR signals and HSRM for high SNR signals.
Experiments show that MoE-AMC achieved an average classification accuracy of 71.76% across different SNR levels, surpassing the performance of previous SOTA models by nearly 10%.
arXiv Detail & Related papers (2023-12-04T19:31:15Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
This paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix.
The entire encoder-decoder network is utilized for channel compression.
Our method outperforms state-of-the-art channel estimation and feedback techniques in joint tasks.
arXiv Detail & Related papers (2023-06-08T06:15:17Z) - Pay Less But Get More: A Dual-Attention-based Channel Estimation Network
for Massive MIMO Systems with Low-Density Pilots [41.213515826100696]
We propose a dual-attention-based channel estimation network (DACEN) to realize accurate channel estimation via low-density pilots.
Experimental results reveal that the proposed DACEN-based method achieves better channel estimation performance than the existing methods.
arXiv Detail & Related papers (2023-03-02T05:34:25Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - Learning to Perform Downlink Channel Estimation in Massive MIMO Systems [72.76968022465469]
We study downlink (DL) channel estimation in a Massive multiple-input multiple-output (MIMO) system.
A common approach is to use the mean value as the estimate, motivated by channel hardening.
We propose two novel estimation methods.
arXiv Detail & Related papers (2021-09-06T13:42:32Z) - Deep Denoising Neural Network Assisted Compressive Channel Estimation
for mmWave Intelligent Reflecting Surfaces [99.34306447202546]
This paper proposes a deep denoising neural network assisted compressive channel estimation for mmWave IRS systems.
We first introduce a hybrid passive/active IRS architecture, where very few receive chains are employed to estimate the uplink user-to-IRS channels.
The complete channel matrix can be reconstructed from the limited measurements based on compressive sensing.
arXiv Detail & Related papers (2020-06-03T12:18:57Z) - Towards a Competitive End-to-End Speech Recognition for CHiME-6 Dinner
Party Transcription [73.66530509749305]
In this paper, we argue that, even in difficult cases, some end-to-end approaches show performance close to the hybrid baseline.
We experimentally compare and analyze CTC-Attention versus RNN-Transducer approaches along with RNN versus Transformer architectures.
Our best end-to-end model based on RNN-Transducer, together with improved beam search, reaches quality by only 3.8% WER abs. worse than the LF-MMI TDNN-F CHiME-6 Challenge baseline.
arXiv Detail & Related papers (2020-04-22T19:08:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.